4,153 research outputs found

    Multimodality Quantitative Assessments of Myocardial Perfusion Using Dynamic Contrast Enhanced Magnetic Resonance and 15O-Labeled Water Positron Emission Tomography Imaging

    Get PDF
    Kinetic modeling of myocardial perfusion imaging data allows the absolute quantification of myocardial blood flow (MBF) and can improve the diagnosis and clinical assessment of coronary artery disease (CAD). Positron emission tomography (PET) imaging is considered the reference standard technique for absolute quantification, whilst oxygen-15 (15O)-water has been extensively implemented for MBF quantification. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has also been used for MBF quantification and showed comparable diagnostic performance against (¹⁵ O)-water PET studies. We investigated for the first time the diagnostic performance of two different PET MBF analysis softwares PMOD and Carimas, for obstructive CAD detection against invasive clinical standard methods in 20 patients with known or suspected CAD. Fermi and distributed parameter modeling-derived MBF quantification from DCE-MRI was also compared against (15O)-water PET, in a subgroup of six patients. The sensitivity and specificity for PMOD was significantly superior for obstructive CAD detection in both per vessel (0.83, 0.90) and per patient (0.86, 0.75) analysis, against Carimas (0.75, 0.65) and (0.81, 0.70), respectively. We showed strong, significant correlations between MR and PET MBF quantifications (r = 0.83 - 0.92). However, DP and PMOD analysis demonstrated comparable and higher hemodynamic differences between obstructive versus (no, minor, or non)-obstructive CAD, against Fermi and Carimas analysis. Our MR method assessments against the optimum PET reference standard technique for perfusion analysis showed promising results in per segment level and can support further multimodality assessments in larger patient cohorts. Further MR against PET assessments may help to determine their comparative diagnostic performance for obstructive CAD detection

    Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need

    Get PDF
    The diagnostic management of patients with angina pectoris typically centres on the detection of obstructive epicardial CAD, which aligns with evidence-based treatment options that include medical therapy and myocardial revascularisation. This clinical paradigm fails to account for the considerable proportion (approximately one-third) of patients with angina in whom obstructive CAD is excluded. This common scenario presents a diagnostic conundrum whereby angina occurs but there is no obstructive CAD (ischaemia and no obstructive coronary artery disease—INOCA). We review new insights into the pathophysiology of angina whereby myocardial ischaemia results from a deficient supply of oxygenated blood to the myocardium, due to various combinations of focal or diffuse epicardial disease (macrovascular), microvascular dysfunction or both. Macrovascular disease may be due to the presence of obstructive CAD secondary to atherosclerosis, or may be dynamic due to a functional disorder (eg, coronary artery spasm, myocardial bridging). Pathophysiology of coronary microvascular disease may involve anatomical abnormalities resulting in increased coronary resistance, or functional abnormalities resulting in abnormal vasomotor tone. We consider novel clinical diagnostic techniques enabling new insights into the causes of angina and appraise the need for improved therapeutic options for patients with INOCA. We conclude that the taxonomy of stable CAD could improve to better reflect the heterogeneous pathophysiology of the coronary circulation. We propose the term ‘stable coronary syndromes’ (SCS), which aligns with the well-established terminology for ‘acute coronary syndromes’. SCS subtends a clinically relevant classification that more fully encompasses the different diseases of the epicardial and microvascular coronary circulation

    Diagnostic accuracy of myocardial perfusion imaging with czt technology. Systemic review and meta-analysis of comparison with invasive coronary angiography

    Get PDF
    OBJECTIVES: This study sought to summarize the evidence on stress myocardial perfusion imaging (MPI) using cadmium-zinc-telluride (CZT) technology for the diagnosis of obstructive coronary artery disease (CAD). The CZT cameras are newly introduced, and comparative data with the conventional Anger technology (Anger-MPI) are lacking. BACKGROUND: The diagnostic accuracy of Anger-MPI for detection of angiographically significant CAD is well established; however, less evidence is available on the diagnostic accuracy of CZT-MPI. METHODS: Clinical studies comparing CZT-MPI and invasive coronary angiography were systematically searched and abstracted. Calculations of diagnostic accuracy, including sensitivity, specificity, likelihood ratios, and diagnostic odds ratio, were obtained with fixed and random effects, reporting point estimates and 95% confidence intervals. RESULTS: Based on our search, a total of 16 studies (N = 2,092) were included. The sensitivity of CZT-MPI was 0.84 (95% confidence interval [CI]: 0.78 to 0.89), whereas the specificity of 0.69 (95% CI: 0.62 to 0.76) was significantly reduced. The positive likelihood ratio was 2.73 (95% CI: 2.21 to 3.39), the negative likelihood ratio was 0.24 (95% CI: 0.17 to 0.31), and the diagnostic odds ratio was 11.93 (95% CI: 7.84 to 17.42). At subgroup and meta-regression analyses, the diagnostic accuracy between D-SPECT and Discovery cameras was similar (p = 0.711) and not impacted upon by smaller sample size studies (p = 0.573). CONCLUSIONS: CZT-MPI has satisfactory sensitivity for angiographically significant CAD, but its suboptimal specificity warrants further development and research

    A New Approach in Risk Stratification by Coronary CT Angiography.

    Get PDF
    For a decade, coronary computed tomographic angiography (CCTA) has been used as a promising noninvasive modality for the assessment of coronary artery disease (CAD) as well as cardiovascular risks. CCTA can provide more information incorporating the presence, extent, and severity of CAD; coronary plaque burden; and characteristics that highly correlate with those on invasive coronary angiography. Moreover, recent techniques of CCTA allow assessing hemodynamic significance of CAD. CCTA may be potentially used as a substitute for other invasive or noninvasive modalities. This review summarizes risk stratification by anatomical and hemodynamic information of CAD, coronary plaque characteristics, and burden observed on CCTA

    The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging

    Get PDF
    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination. Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function. When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed. With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR

    CT and PET/CT Hybrid Imaging of Coronary Artery Disease

    Get PDF
    Coronary artery disease (CAD) is a chronic process that evolves over decades and may culminate in myocardial infarction (MI). While invasive coronary angiography (ICA) is still considered the gold standard of imaging CAD, non-invasive assessment of both the vascular anatomy and myocardial perfusion has become an intriguing alternative. In particular, computed tomography (CT) and positron emission tomography (PET) form an attractive combination for such studies. Increased radiation dose is, however, a concern. Our aim in the current thesis was to test novel CT and PET techniques alone and in hybrid setting in the detection and assessment of CAD in clinical patients. Along with diagnostic accuracy, methods for the reduction of the radiation dose was an important target. The study investigating the coronary arteries of patients with atrial fibrillation (AF) showed that CAD may be an important etiology of AF because a high prevalence of CAD was demonstrated within AF patients. In patients with suspected CAD, we demonstrated that a sequential, prospectively ECG-triggered CT technique was applicable to nearly 9/10 clinical patients and the radiation dose was over 60% lower than with spiral CT. To detect the functional significance of obstructive CAD, a novel software for perfusion quantification, CarimasTM, showed high reproducibility with 15O-labelled water in PET, supporting feasibility and good clinical accuracy. In a larger cohort of 107 patients with moderate 30-70% pre-test probability of CAD, hybrid PET/CT was shown to be a powerful diagnostic method in the assessment of CAD with diagnostic accuracy comparable to that of invasive angiography and fractional flow reserve (FFR) measurements. A hybrid study may be performed with a reasonable radiation dose in a vast majority of the cases, improving the performance of stand-alone PET and CT angiography, particularly when the absolute quantification of the perfusion is employed. These results can be applied into clinical practice and will be useful for daily clinical diagnosis of CAD.Siirretty Doriast

    Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques

    Get PDF
    Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD

    IAEA Atlas of Cardiac PET/CT

    Get PDF
    This open access book presents a wide portfolio of examples of positron emission tomography coupled with computer tomography (PET/CT) studies in various cardiac conditions in order to provide a rationale for the implementation of this technology in an array of clinical conditions. Cardiovascular diseases are a major contributor to premature morbidity and mortality worldwide. Low- and middle-income countries (LMICs) are particularly affected by cardiovascular diseases (CVDs), with more than 75% of all CVDs deaths occurring in these countries. For this reason, target 3.4 of the United Nations (UN) Sustainable Development Goals (SDGs) agenda aims at a 30% reduction in premature mortality due to non-communicable diseases (NCDs), which include CVDs, by 2030. Among CVDs, ischemic heart disease (IHD) plays an important role and, according to the Institute for Health Metrics and Evaluation (IHME), it was responsible for 15.96% of global deaths in 2017. Between 2000 and 2017, the number of IHD deaths worldwide increased by 0.26% per year. Several imaging tools help to non-invasively diagnose, stratify risk and guide management in cardiac disease. They include nuclear cardiology techniques, using either SPECT (single photon emission computed tomography) or PET/CT. While myocardial imaging with SPECT has been fully embraced by the cardiology community and is widely available worldwide, PET/CT introduction has been slower, due not only to its higher costs, but also to the limited availability of PET/VCT scanners, mostly utilized for oncological applications. This book is an invaluable tool for nuclear medicine physicians, cardiologists and radiologists
    corecore