2,369 research outputs found

    3D reconstruction of cerebral blood flow and vessel morphology from x-ray rotational angiography

    Get PDF
    Three-dimensional (3D) information on blood flow and vessel morphology is important when assessing cerebrovascular disease and when monitoring interventions. Rotational angiography is nowadays routinely used to determine the geometry of the cerebral vasculature. To this end, contrast agent is injected into one of the supplying arteries and the x-ray system rotates around the head of the patient while it acquires a sequence of x-ray images. Besides information on the 3D geometry, this sequence also contains information on blood flow, as it is possible to observe how the contrast agent is transported by the blood. The main goal of this thesis is to exploit this information for the quantitative analysis of blood flow. I propose a model-based method, called flow map fitting, which determines the blood flow waveform and the mean volumetric flow rate in the large cerebral arteries. The method uses a model of contrast agent transport to determine the flow parameters from the spatio-temporal progression of the contrast agent concentration, represented by a flow map. Furthermore, it overcomes artefacts due to the rotation (overlapping vessels and foreshortened vessels at some projection angles) of the c-arm using a reliability map. For the flow quantification, small changes to the clinical protocol of rotational angiography are desirable. These, however, hamper the standard 3D reconstruction. Therefore, a new method for the 3D reconstruction of the vessel morphology which is tailored to this application is also presented. To the best of my knowledge, I have presented the first quantitative results for blood flow quantification from rotational angiography. Additionally, the model-based approach overcomes several problems which are known from flow quantification methods for planar angiography. The method was mainly validated on images from different phantom experiments. In most cases, the relative error was between 5% and 10% for the volumetric mean flow rate and between 10% and 15% for the blood flow waveform. Additionally, the applicability of the flow model was shown on clinical images from planar angiographic acquisitions. From this, I conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions

    Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation

    Full text link
    Computational fluid dynamics (CFD) can be used to analyze blood flow and to predict hemodynamic outcomes after interventions for coarctation of the aorta and other cardiovascular diseases. We report the first use of cardiac 3‐dimensional rotational angiography for CFD and show not only feasibility but also validation of its hemodynamic computations with catheter‐based measurements in three patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/1/ccd28507.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/2/ccd28507_am.pd

    The effect of end-range cervical rotation on vertebral and internal carotid arterial blood flow and cerebral inflow: a sub analysis of an MRI study

    Get PDF
    Introduction: Cervical spine manual therapy has been associated with a small risk of serious adverse neurovascular events, particularly to the vertebral arteries. Sustained end-range rotation is recommended clinically as a pre-manipulative screening tool; however ultrasound studies have yielded conflicting results about the effect of rotation on blood flow in the vertebral arteries. There has been little research on internal carotid arterial flow or utilising the reference standard of angiography. Objectives: To evaluate the mean effect of cervical rotation on blood flow in the craniocervical arteries and blood supply to the brain, as well as individual variation. Design: This was an observational study. Method: Magnetic resonance angiography was used to measure average blood flow volume in the vertebral arteries, internal carotid arteries, and total cerebral inflow, in three neck positions: neutral, end-range left rotation and end-range right rotation in healthy adults. Results: Twenty participants were evaluated. There was a decrease in average blood flow volume in the vertebral and internal carotid arteries on contralateral rotation, compared to neutral. This was statistically significant on left rotation only. Ipsilateral rotation had no effect on average blood flow volume in any artery. Total cerebral inflow was not significantly affected by rotation in either direction. Conclusions: It appears that in healthy adults the cerebral vasculature can compensate for decreased flow in one or more arteries by increasing flow in other arteries, to maintain cerebral perfusion. Sustained end-range rotation may therefore reflect the compensatory capacity of the system as a whole rather than isolated vertebrobasilar function

    Multimodality Imaging in Ischemic Cardiomyopathy.

    Get PDF
    Cardiac multimodality (hybrid) imaging can be obtained from a variety of techniques, such as nuclear medicine with single photon emission computed tomography (SPECT) and positron emission tomography (PET), or radiology with multislice computed tomography (CT), magnetic resonance (MR) and echography. They are typically combined in a side-by-side or fusion mode in order to provide functional and morphological data to better characterise coronary artery disease, with more proven efficacy than when used separately. The gained information is then used to guide revascularisation procedures. We present an up-to-date comprehensive overview of multimodality imaging already in clinical use, as well as a combination of techniques with promising or developing applications
    corecore