969 research outputs found

    Community-Based Health and Exposure Study around Urban Oil Developments in South Los Angeles.

    Get PDF
    Oilfield-adjacent communities often report symptoms such as headaches and/or asthma. Yet, little data exists on health experiences and exposures in urban environments with oil and gas development. In partnership with Promotoras de Salud (community health workers), we gathered household surveys nearby two oil production sites in Los Angeles. We tested the capacity of low-cost sensors for localized exposure estimates. Bilingual surveys of 205 randomly sampled residences were collected within two 1500 ft. buffer areas (West Adams and University Park) surrounding oil development sites. We used a one-sample proportion test, comparing overall rates from the California Health Interview Survey (CHIS) of Service Planning Area 6 (SPA6) and Los Angeles County for variables of interest such as asthma. Field calibrated low-cost sensors recorded methane emissions. Physician diagnosed asthma rates were reported to be higher within both buffers than in SPA6 or LA County. Asthma prevalence in West Adams but not University Park was significantly higher than in Los Angeles County. Respondents with diagnosed asthma reported rates of emergency room visits in the previous 12 months similar to SPA6. 45% of respondents were unaware of oil development; 63% of residents would not know how to contact local regulatory authorities. Residents often seek information about their health and site-related activities. Low-cost sensors may be useful in highlighting differences between sites or recording larger emission events and can provide localized data alongside resident-reported symptoms. Regulatory officials should help clarify information to the community on methods for reporting health symptoms. Our community-based participatory research (CBPR) partnership supports efforts to answer community questions as residents seek a safety buffer between sensitive land uses and active oil development

    Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds

    Get PDF
    This report presents a literature review of the state of the art of sensor based monitoring of air quality of benzene and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considered commercially available sensors, including, PID based sensors, semiconductor (resistive gas sensor) and portable on-line measuring devices (sensor arrays). The bibliographic collection includes the following topics: sensor description, field of application in fixed, mobile, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.JRC.C.5-Air and Climat

    Novel gas sensors and electronic noses for optical, electrical and hybrid sensing: development, properties and applications

    Get PDF
    Smell is one of the most important senses of man. It is used in everyday life, influencing our behaviour. Evaluation of the quality of food and beverages or the production control in industries that require specialised personnel, are some examples of its use. The Electronic Nose mimics the human nose, through the transduction of a chemical interaction between a sensitive layer and the volatile compounds, generating a measurable signal. Conducting polymers, doped with dodecylbenzenesulfonic acid, employed in electrical gas sensors and in an electronic nose showed their applicability in monitoring the circadian emissions of fragrance by the plant Madagascar Jasmin and in the discrimination and classification of different samples of flaxseed, respectively. An innovative approach in the development of sensitive thin films based on organized liquid crystal micelles in an ionic liquid, encapsulated in a biopolymer matrix and used as sensitive layers for gas sensors, is the focus of this thesis. Liquid crystal micelles acting as sensitive elements that change reversibly their orientation in the presence of volatile compounds showed, as a proof of concept, their potential use in the classification of volatile solvents. They were also successfully tested for monitoring the quality of Tilapia fish. The combination of this optical system with the electrical system gave the so called "hybrid sensor" with dual response. Thus, a single sensor was efficient in the quantification of ethanol in gasoline. Polarized light microscopy, SEM and AFM techniques were used to study the morphology of these layers and have revealed that the formation of the micelles is closely influenced by the solvent where the liquid crystal molecules are arranged. QCM studies were conducted in order to learn more about the interaction of these films with volatile compounds, and to check the influence of parameters such as the exposure time, solvent nature, film composition and drying time, on the film. These biopolymer films were also used as immobilisation matrix for cytochrome c, forming electrochemical sensors having an additional optical response

    Formaldehyde and total aldehydes in indoor air of public environments by voltammetry

    Get PDF
    The proposed method involves active sampling, where a sampling pump is used to pull air through a solution and voltammetric analysis of the obtained solutions. No interferences have been observed. In addition, very little sample preparation is required. Analyses were performed in 19 indoor stations and one in outdoor. Measurements were carried out on University environments: Museum of Chemistry, Zoological Museum, libraries, laboratories, corridors, meeting rooms, photocopying room, machine shop and terrace. Formaldehyde concentrations in analyzed samples ranged from 2.6 to 85 μg m-3 (median = 32 μg m-3), while the sum of others aldehydes ranged from 2 to 25 μg m-3 (median =2.4 μg m-3). In the sample Zoological Museum 2, the sum of other aldehydes was very high (400 μg m-3). The results demonstrated that artificial ventilation is an efficient system to control indoor air pollution caused by aldehydes emissions

    Applications of aerospace technology in the public interest: Pollution measurement

    Get PDF
    This study of selected NASA contributions to the improvement of pollution measurement examines the pervasiveness and complexity of the economic, political, and social issues in the environmental field; provides a perspective on the relationship between the conduct of aerospace R and D and specific improvements in on site air pollution monitoring equipment now in use; describes the basic relationship between the development of satellite-based monitoring systems and their influence on long-term progress in improving environmental quality; and comments on how both instrumentation and satellite remote sensing are contributing to an improved environment. Examples of specific gains that have been made in applying aerospace R and D to environmental problem-solving are included
    corecore