12 research outputs found

    Stochastic Relational Presheaves and Dynamic Logic for Contextuality

    Full text link
    Presheaf models provide a formulation of labelled transition systems that is useful for, among other things, modelling concurrent computation. This paper aims to extend such models further to represent stochastic dynamics such as shown in quantum systems. After reviewing what presheaf models represent and what certain operations on them mean in terms of notions such as internal and external choices, composition of systems, and so on, I will show how to extend those models and ideas by combining them with ideas from other category-theoretic approaches to relational models and to stochastic processes. It turns out that my extension yields a transitional formulation of sheaf-theoretic structures that Abramsky and Brandenburger proposed to characterize non-locality and contextuality. An alternative characterization of contextuality will then be given in terms of a dynamic modal logic of the models I put forward.Comment: In Proceedings QPL 2014, arXiv:1412.810

    A doctrinal approach to modal/temporal Heyting logic and non-determinism in processes

    Get PDF
    The study of algebraic modelling of labelled non-deterministic concurrent processes leads us to consider a category LB , obtained from a complete meet-semilattice B and from B-valued equivalence relations. We prove that, if B has enough properties, then LB presents a two-fold internal logical structure, induced by two doctrines definable on it: one related to its families of subobjects and one to its families of regular subobjects. The first doctrine is Heyting and makes LB a Heyting category, the second one is Boolean. We will see that the difference between these two logical structures, namely the different behaviour of the negation operator, can be interpreted in terms of a distinction between non-deterministic and deterministic behaviours of agents able to perform computations in the context of the same process. Moreover, the sorted first-order logic naturally associated with LB can be extended to a modal/temporal logic, again using the doctrinal setting. Relations are also drawn to other computational model

    Approximation in quantale-enriched categories

    Full text link
    Our work is a fundamental study of the notion of approximation in V-categories and in (U,V)-categories, for a quantale V and the ultrafilter monad U. We introduce auxiliary, approximating and Scott-continuous distributors, the way-below distributor, and continuity of V- and (U,V)-categories. We fully characterize continuous V-categories (resp. (U,V)-categories) among all cocomplete V-categories (resp. (U,V)-categories) in the same ways as continuous domains are characterized among all dcpos. By varying the choice of the quantale V and the notion of ideals, and by further allowing the ultrafilter monad to act on the quantale, we obtain a flexible theory of continuity that applies to partial orders and to metric and topological spaces. We demonstrate on examples that our theory unifies some major approaches to quantitative domain theory.Comment: 17 page

    Extending Set Functors to Generalised Metric Spaces

    Get PDF
    For a commutative quantale V, the category V-cat can be perceived as a category of generalised metric spaces and non-expanding maps. We show that any type constructor T (formalised as an endofunctor on sets) can be extended in a canonical way to a type constructor TV on V-cat. The proof yields methods of explicitly calculating the extension in concrete examples, which cover well-known notions such as the Pompeiu-Hausdorff metric as well as new ones. Conceptually, this allows us to to solve the same recursive domain equation X ≅ TX in different categories (such as sets and metric spaces) and we study how their solutions (that is, the final coalgebras) are related via change of base. Mathematically, the heart of the matter is to show that, for any commutative quantale V, the “discrete functor Set → V-cat from sets to categories enriched over V is V-cat-dense and has a density presentation that allows us to compute left-Kan extensions along D

    Proceedings of the Workshop on Linear Logic and Logic Programming

    Get PDF
    Declarative programming languages often fail to effectively address many aspects of control and resource management. Linear logic provides a framework for increasing the strength of declarative programming languages to embrace these aspects. Linear logic has been used to provide new analyses of Prolog\u27s operational semantics, including left-to-right/depth-first search and negation-as-failure. It has also been used to design new logic programming languages for handling concurrency and for viewing program clauses as (possibly) limited resources. Such logic programming languages have proved useful in areas such as databases, object-oriented programming, theorem proving, and natural language parsing. This workshop is intended to bring together researchers involved in all aspects of relating linear logic and logic programming. The proceedings includes two high-level overviews of linear logic, and six contributed papers. Workshop organizers: Jean-Yves Girard (CNRS and University of Paris VII), Dale Miller (chair, University of Pennsylvania, Philadelphia), and Remo Pareschi, (ECRC, Munich)

    Behavioural equivalences for timed systems

    Full text link
    Timed transition systems are behavioural models that include an explicit treatment of time flow and are used to formalise the semantics of several foundational process calculi and automata. Despite their relevance, a general mathematical characterisation of timed transition systems and their behavioural theory is still missing. We introduce the first uniform framework for timed behavioural models that encompasses known behavioural equivalences such as timed bisimulations, timed language equivalences as well as their weak and time-abstract counterparts. All these notions of equivalences are naturally organised by their discriminating power in a spectrum. We prove that this result does not depend on the type of the systems under scrutiny: it holds for any generalisation of timed transition system. We instantiate our framework to timed transition systems and their quantitative extensions such as timed probabilistic systems

    Higher Catoids, Higher Quantales and their Correspondences

    Full text link
    We establish modal correspondences between omega-catoids and convolution omega-quantales. These are related to J\'onsson-Tarski style-dualities between relational structures and lattices with operators. We introduce omega-catoids as generalisations of (strict) omega-categories and in particular of the higher path categories generated by polygraphs (or computads) in higher rewriting. Convolution omega-quantales generalise the powerset omega-Kleene algebras recently proposed for algebraic coherence proofs in higher rewriting to weighted variants. We extend these correspondences to ({\omega},p)-catoids and convolution ({\omega},p)-quantales suitable for modelling homotopies in higher rewriting. We also specialise them to finitely decomposable ({\omega}, p)-catoids, an appropriate setting for defining ({\omega}, p)-semirings and ({\omega}, p)-Kleene algebras. These constructions support the systematic development and justification of higher quantale axioms relative to a previous ad hoc approach.Comment: 46 pages, 8 figure

    Kantorovich Functors and Characteristic Logics for Behavioural Distances

    Full text link
    Behavioural distances measure the deviation between states in quantitative systems, such as probabilistic or weighted systems. There is growing interest in generic approaches to behavioural distances. In particular, coalgebraic methods capture variations in the system type (nondeterministic, probabilistic, game-based etc.), and the notion of quantale abstracts over the actual values distances take, thus covering, e.g., two-valued equivalences, (pseudo-)metrics, and probabilistic (pseudo-)metrics. Coalgebraic behavioural distances have been based either on liftings of SET-functors to categories of metric spaces, or on lax extensions of SET-functors to categories of quantitative relations. Every lax extension induces a functor lifting but not every lifting comes from a lax extension. It was shown recently that every lax extension is Kantorovich, i.e. induced by a suitable choice of monotone predicate liftings, implying via a quantitative coalgebraic Hennessy-Milner theorem that behavioural distances induced by lax extensions can be characterized by quantitative modal logics. Here, we essentially show the same in the more general setting of behavioural distances induced by functor liftings. In particular, we show that every functor lifting, and indeed every functor on (quantale-valued) metric spaces, that preserves isometries is Kantorovich, so that the induced behavioural distance (on systems of suitably restricted branching degree) can be characterized by a quantitative modal logic
    corecore