786 research outputs found

    Groupoid sheaves as quantale sheaves

    Get PDF
    Several notions of sheaf on various types of quantale have been proposed and studied in the last twenty five years. It is fairly standard that for an involutive quantale Q satisfying mild algebraic properties the sheaves on Q can be defined to be the idempotent self-adjoint Q-valued matrices. These can be thought of as Q-valued equivalence relations, and, accordingly, the morphisms of sheaves are the Q-valued functional relations. Few concrete examples of such sheaves are known, however, and in this paper we provide a new one by showing that the category of equivariant sheaves on a localic etale groupoid G (the classifying topos of G) is equivalent to the category of sheaves on its involutive quantale O(G). As a means towards this end we begin by replacing the category of matrix sheaves on Q by an equivalent category of complete Hilbert Q-modules, and we approach the envisaged example where Q is an inverse quantal frame O(G) by placing it in the wider context of stably supported quantales, on one hand, and in the wider context of a module theoretic description of arbitrary actions of \'etale groupoids, both of which may be interesting in their own right.Comment: 62 pages. Structure of preprint has changed. It now contains the contents of former arXiv:0807.3859 (withdrawn), and the definition of Q-sheaf applies only to inverse quantal frames (Hilbert Q-modules with enough sections are given no special name for more general quantales

    Sup-lattice 2-forms and quantales

    Full text link
    A 2-form between two sup-lattices L and R is defined to be a sup-lattice bimorphism L x R -> 2. Such 2-forms are equivalent to Galois connections, and we study them and their relation to quantales, involutive quantales and quantale modules. As examples we describe applications to C*-algebras.Comment: 30 pages. Contains more detailed background section and corrections of several typos and mistake
    corecore