462 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Structured Peer-to-Peer Overlay Deployment on MANET: A Survey

    Get PDF
    There are many common characteristics between Peer-to-Peer (P2P) overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, dynamicity and changing topology are the most shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality, and their routing information can complement that of MANET. MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. The aim of this paper is to survey current P2P over MANET systems. Specifically, this paper focuses on and investigates structured P2P over MANET. Overall, more than thirty distinct approaches have been classified into groups and introduced in tables providing a structured overview of the area. The survey addresses the identified approaches in terms of P2P systems, MANET underlay systems and the performance of the reviewed systems

    Xcast Based Routing Protocol For Push To Talk Application In Mobile Ad Hoc Networks

    Get PDF
    Mobile ad-hoc networks comprise a type of wireless network that can be easily created without the need for network infrastructure or administration. These networks are organized and administered into temporary and dynamic network topologies. Unfortunately, mobile ad-hoc networks suffer from some limitations related to insufficient bandwidth. The proliferation of new IP Multimedia subsystem services (IMs), such as Push-to-talk (PTT) applications consume large amounts of bandwidth, resulting in degraded QoS performance of mobile ad-hoc networks. In this thesis, a Priority XCAST based routing protocol (P-XCAST) is proposed for mobile ad-hoc networks to minimize bandwidth consumption. P-XCAST is based on demand route requests and route reply mechanisms for every destination in the PXCAST layer. To build the network topology and fill up the route table for nodes, the information in the route table is used to classify the XCAST list of destinations according to similarities on their next hop. Furthermore, P-XCAST is merged with a proposed Group Management algorithm to handle node mobility by classifying nodes into two types: group head and member. The proposed protocol was tested using the GloMoSim network simulator under different network scenarios to investigate Quality of Service (QoS) performance network metrics. P-XCAST performance was better by about 20% than those of other tested routing protocols by supporting of group size up to twenty receivers with an acceptable QoS. Therefore, it can be applied under different network scenarios (static or dynamic). In addition Link throughput and average delay was calculated using queuing network model; as this model is suitable for evaluating the IEEE 802.11 MAC that is used for push to talk applications. The analytical results for link throughput and average delay were used to validate the simulated results

    Multipath routing for video delivery over bandwidth-limited networks

    Get PDF
    The delivery of quality video service often requires high bandwidth with low delay or cost in network transmission. Current routing protocols such as those used in the Internet are mainly based on the single-path approach (e.g., the shortest-path routing). This approach cannot meet the end-to-end bandwidth requirement when the video is streamed over bandwidth-limited networks. In order to overcome this limitation, we propose multipath routing, where the video takes multiple paths to reach its destination(s), thereby increasing the aggregate throughput. We consider both unicast (point-to-point) and multicast scenarios. For unicast, we present an efficient multipath heuristic (of complexity O(|V|3)), which achieves high bandwidth with low delay. Given a set of path lengths, we then present and prove a simple data scheduling algorithm as implemented at the server, which achieves the theoretical minimum end-to-end delay. For a network with unit-capacity links, the algorithm, when combined with disjoint-path routing, offers an exact and efficient solution to meet a bandwidth requirement with minimum delay. For multicast, we study the construction of multiple trees for layered video to satisfy the user bandwidth requirements. We propose two efficient heuristics on how such trees can be constructed so as to minimize the cost of their aggregation subject to a delay constraint.published_or_final_versio

    Mesh based and Hybrid Multicast routing protocols for MANETs: Current State of the art

    Get PDF
    This paper discusses various multicast routing protocols which are proposed in the recent past each having its own unique characteristic, with a motive of providing a complete understanding of these multicast routing protocols and present the scope of future research in this field. Further, the paper specifically discusses the current development in the development of mesh based and hybrid multicasting routing protocols. The study of this paper addresses the solution of most difficult task in Multicast routing protocols for MANETs under host mobility which causes multi-hop routing which is even more severe with bandwidth limitations. The Multicast routing plays a substantial part in MANETs

    A membership management protocol for mobile P2P networks

    Get PDF
    MANETs are self-organizing networks composed of mobile wireless nodes with often scarce resources. Distributed applications based on the P2P paradigm are the best candidates to run over such networks. To profit from the service provided by a P2P overlay (e.g. file sharing using BitTorrent), a node needs to be permanently informed about the other members of the overlay (e.g. other peers interested in the same file as currently provided by the BitTorrent central tracker). This P2P membership management is a costly and difficult task in such dynamic and resource limited environment. We focus on this problem and we propose a robust, network friendly and decentralized membership management protocol allowing peer discovery and update. Compared to flooding, client-server or multicast based approaches, our protocol achieves significantly lower network overhead and lower pollution of caches caused by peers who have left. Moreover, as network splits are very frequent in MANETs, our protocol is designed to be partition-aware. Namely, it allows separate overlays providing the same service to efficiently merge together when communication opportunities occur. The efficiency of our solution is validated through extensive NS-2 simulations

    ECARDM: Energy Consumption Aware Route Discovery for Multicasting in Mobile Ad hoc Networks

    Get PDF
    Consideration of energy consumption in the case of wireless ad hoc networks leads to effective reduction of energy consumption by the nodes and increases the lifetime of the batteries for nodes. It is imperative from the existing models that there is significant scope for improvement in the energy-consumption based route discovery models. A model of Fuzzy based marginal energy disbursed multicast route discovery model for MANETs can support in reducing the power consumption has been proposed in our earlier research paper. In the present paper, a contemporary solution termed 201C;Energy Consumption Aware Route Discovery for Multicasting for MANETs201D; has been proposed, which is profoundly a fuzzy reasoning and genetic algorithm based model that focus on both the energy consumption and also the element of end-to-end delay whilst discovering the route. The experimental study of the model in comparison to BWDCMR and GAEEQMR models depicted that the proposed algorithm is very effective and can certainly be result oriented
    corecore