926 research outputs found

    Audio-Visual Biometrics and Forgery

    Get PDF

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Text-Independent F0 Transformation with Non-Parallel Data for Voice Conversion

    Get PDF
    In voice conversion, frame-level mean and variance normalization is typically used for fundamental frequency (F0) transformation, which is text-independent and requires no parallel training data. Some advanced methods transform pitch contours instead, but require either parallel training data or syllabic annotations. We propose a method which retains the simplicity and text-independence of the frame-level conversion while yielding high-quality conversion. We achieve these goals by (1) introducing a text-independent tri-frame alignment method, (2) including delta features of F0 into Gaussian mixture model (GMM) conversion and (3) reducing the well-known GMM oversmoothing effect by F0 histogram equalization. Our objective and subjective experiments on the CMU Arctic corpus indicate improvements over both the mean/variance normalization and the baseline GMM conversion

    Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis

    Get PDF
    Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these models can be recovered through the Gaussian process latent variable model. This gives us a flexible formalism for multi-view learning where the latent variables can be used both for exploratory purposes and for learning representations that enable efficient inference for ambiguous estimation tasks. Learning is performed in a Bayesian manner through the formulation of a variational compression scheme which gives a rigorous lower bound on the log likelihood. Our Bayesian framework provides strong regularization during training, allowing the structure of the latent space to be determined efficiently and automatically. We demonstrate this by producing the first (to our knowledge) published results of learning from dozens of views, even when data is scarce. We further show experimental results on several different types of multi-view data sets and for different kinds of tasks, including exploratory data analysis, generation, ambiguity modelling through latent priors and classification.Comment: 49 pages including appendi

    Towards speech recognition using palato-lingual contact patterns for voice restoration.

    Get PDF
    The loss of speech following a laryngectomy presents substantial challenges, and a number of devices have been developed to assist these patients. These devices range from the electrolarynx to tracheoesophageal speech. However, all of these devices and techniques have concentrated on producing sound from the patient’s vocal tract. Research into a new type of artificial larynx is presented. This new device utilizes the measurement of dynamic tongue-palate contact patterns to infer intended speech. The dynamic tongue measurement is achieved with the use of an existing palatome- ter and pseudopalate. These signals are then converted to 2-D Space-Time plots and feature extraction methods (such as Principal Component Analysis, Fourier Descrip- tors and Generic Fourier Descriptors) are used to extract suitable features for use as input to neural network systems. Two types of neural network (Multi-layer Percep- trons and Support Vector Machines) are investigated and a voting system is formed. The final system can correctly identify fifty common English words 94.14% of the time with a rejection rate of 17.74%. Voice morphing is investigated as a technique to match the artificially synthesized voice to the laryngectomy patient’s original voice. It is successfully implemented thus creating a transfer function that can change one person’s voice to sound like another’s. Once the voting system has correctly identified the word said by the patient the word is then synthesized in the patient’s pre-laryngectomy voice. The final artificial larynx system solves a number of the problems inherent in previ- ous artificial larynx designs (such as poor voice quality and invasiveness). This new artificial larynx uses current technology in a new way to produce a viable solution for alaryngeal patients

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed
    • 

    corecore