400 research outputs found

    Extending quality and covariate analyses for gait biometrics

    No full text
    Recognising humans by the way they walk has attracted a significant interest in recent years due to its potential use in a number of applications such as automated visual surveillance. Technologies utilising gait biometrics have the potential to provide safer society and improve quality of life. However, automated gait recognition is a very challenging research problem and some fundamental issues remain unsolved.At the moment, gait recognition performs well only when samples acquired in similar conditions are matched. An operational automated gait recognition system does not yet exist. The primary aim of the research presented in this thesis is to understand the main challenges associated with deployment of gait recognition and to propose novel solutions to some of the most fundamental issues. There has been lack of understanding of the effect of some subject dependent covariates on gait recognition performance. We have proposed a novel dataset that allows analyses of various covariates in a principled manner. The results of the database evaluation revealed that elapsed time does not affect recognition in the short to medium term, contrary to what other studies have concluded. The analyses show how other factors related to the subject affect recognition performance.Only few gait recognition approaches have been validated in real world conditions. We have collected a new dataset at two realistic locations. Using the database we have shown that there are many environment related factors that can affect performance. The quality of silhouettes has been identified as one of the most important issues for translating gait recognition research to the ‘real-world’. The existing quality algorithms proved insufficient and therefore we extended quality metrics and proposed new ways of improving signature quality and therefore performance. A new fully working automated system has been implemented.Experiments using the system in ‘real-world’ conditions have revealed additional challenges not present when analysing datasets of fixed size. In conclusion, the research has investigated many of the factors that affect current gait recognition algorithms and has presented novel approaches of dealing with some of the most important issues related to translating gait recognition to real-world environments

    Predicting sex as a soft-biometrics from device interaction swipe gestures

    Get PDF
    Touch and multi-touch gestures are becoming the most common way to interact with technology such as smart phones, tablets and other mobile devices. The latest touch-screen input capacities have tremendously increased the quantity and quality of available gesture data, which has led to the exploration of its use in multiple disciplines from psychology to biometrics. Following research studies undertaken in similar modalities such as keystroke and mouse usage biometrics, the present work proposes the use of swipe gesture data for the prediction of soft-biometrics, specifically the user's sex. This paper details the software and protocol used for the data collection, the feature set extracted and subsequent machine learning analysis. Within this analysis, the BestFirst feature selection technique and classification algorithms (naïve Bayes, logistic regression, support vector machine and decision tree) have been tested. The results of this exploratory analysis have confirmed the possibility of sex prediction from the swipe gesture data, obtaining an encouraging 78% accuracy rate using swipe gesture data from two different directions. These results will hopefully encourage further research in this area, where the prediction of soft-biometrics traits from swipe gesture data can play an important role in enhancing the authentication processes based on touch-screen devices

    Unconstrained Ear Processing: What is Possible and What Must Be Done

    Get PDF

    Advanced Biometric Technologies: Emerging Scenarios and Research Trends

    Get PDF
    Biometric systems are the ensemble of devices, procedures, and algorithms for the automatic recognition of individuals by means of their physiological or behavioral characteristics. Although biometric systems are traditionally used in high-security applications, recent advancements are enabling the application of these systems in less-constrained conditions with non-ideal samples and with real-time performance. Consequently, biometric technologies are being increasingly used in a wide variety of emerging application scenarios, including public infrastructures, e-government, humanitarian services, and user-centric applications. This chapter introduces recent biometric technologies, reviews emerging scenarios for biometric recognition, and discusses research trends
    • …
    corecore