4,369 research outputs found

    Wi-Fi Offload: Tragedy of the Commons or Land of Milk and Honey?

    Full text link
    Fueled by its recent success in provisioning on-site wireless Internet access, Wi-Fi is currently perceived as the best positioned technology for pervasive mobile macro network offloading. However, the broad transitions of multiple collocated operators towards this new paradigm may result in fierce competition for the common unlicensed spectrum at hand. In this light, our paper game-theoretically dissects market convergence scenarios by assessing the competition between providers in terms of network performance, capacity constraints, cost reductions, and revenue prospects. We will closely compare the prospects and strategic positioning of fixed line operators offering Wi-Fi services with respect to competing mobile network operators utilizing unlicensed spectrum. Our results highlight important dependencies upon inter-operator collaboration models, and more importantly, upon the ratio between backhaul and Wi-Fi access bit-rates. Furthermore, our investigation of medium- to long-term convergence scenarios indicates that a rethinking of control measures targeting the large-scale monetization of unlicensed spectrum may be required, as otherwise the used free bands may become subject to tragedy-of-commons type of problems.Comment: Workshop on Spectrum Sharing Strategies for Wireless Broadband Services, IEEE PIMRC'13, to appear 201

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea
    • …
    corecore