267 research outputs found

    Learning for Video Compression with Hierarchical Quality and Recurrent Enhancement

    Full text link
    In this paper, we propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network. The frames in the first layer are compressed by an image compression method with the highest quality. Using these frames as references, we propose the Bi-Directional Deep Compression (BDDC) network to compress the second layer with relatively high quality. Then, the third layer frames are compressed with the lowest quality, by the proposed Single Motion Deep Compression (SMDC) network, which adopts a single motion map to estimate the motions of multiple frames, thus saving bits for motion information. In our deep decoder, we develop the Weighted Recurrent Quality Enhancement (WRQE) network, which takes both compressed frames and the bit stream as inputs. In the recurrent cell of WRQE, the memory and update signal are weighted by quality features to reasonably leverage multi-frame information for enhancement. In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides, respectively. Finally, the experiments validate that our HLVC approach advances the state-of-the-art of deep video compression methods, and outperforms the "Low-Delay P (LDP) very fast" mode of x265 in terms of both PSNR and MS-SSIM. The project page is at https://github.com/RenYang-home/HLVC.Comment: Published in CVPR 2020; corrected a minor typo in the footnote of Table 1; corrected Figure 1

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    StairNet: Visual Recognition of Stairs for Human-Robot Locomotion

    Full text link
    Human-robot walking with prosthetic legs and exoskeletons, especially over complex terrains such as stairs, remains a significant challenge. Egocentric vision has the unique potential to detect the walking environment prior to physical interactions, which can improve transitions to and from stairs. This motivated us to create the StairNet initiative to support the development of new deep learning models for visual sensing and recognition of stairs, with an emphasis on lightweight and efficient neural networks for onboard real-time inference. In this study, we present an overview of the development of our large-scale dataset with over 515,000 manually labeled images, as well as our development of different deep learning models (e.g., 2D and 3D CNN, hybrid CNN and LSTM, and ViT networks) and training methods (e.g., supervised learning with temporal data and semi-supervised learning with unlabeled images) using our new dataset. We consistently achieved high classification accuracy (i.e., up to 98.8%) with different designs, offering trade-offs between model accuracy and size. When deployed on mobile devices with GPU and NPU accelerators, our deep learning models achieved inference speeds up to 2.8 ms. We also deployed our models on custom-designed CPU-powered smart glasses. However, limitations in the embedded hardware yielded slower inference speeds of 1.5 seconds, presenting a trade-off between human-centered design and performance. Overall, we showed that StairNet can be an effective platform to develop and study new visual perception systems for human-robot locomotion with applications in exoskeleton and prosthetic leg control
    • …
    corecore