3,769 research outputs found

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Adaptivna estimacija teško-mjerljivih procesnih veličina

    Get PDF
    There exist many problems regarding process control in the process industry since some of the important variables cannot be measured online. This problem can be significantly solved by estimating these difficult-tomeasure process variables. In doing so, the estimator is in fact an appropriate mathematical model of the process which, based on information about easy-to-measure process variables, estimates the current value of the difficultto-measure variable. Since processes are usually time-varying, the precision of the estimation based on the process model which is built on old data is decreasing over time. To avoid estimator accuracy degradation, model parameters should be continuously updated in order to track process behavior. There are a couple of methods available for updating model parameters depending on the type of process model. In this paper, PLSR process model is chosen as the basis of the difficult-to-measure process variable estimator while its parameters are updated in several ways – by the moving window method, recursive NIPALS algorithm, recursive kernel algorithm and Just-in-Time learning algorithm. Properties of these adaptive methods are explored on a simulated example. Additionally, the methods are analyzed in terms of computational load and memory requirements.Problemi s upravljanjem mnogih procesa u industriji vezani su s nemogućnošću on-line mjerenja nekih važnih procesnih veličina. Ovaj se problem može u značajnoj mjeri riješiti estimacijom ovih teško-mjerljivih procesnih veličina. Estimator je pri tome odgovarajući matematički model procesa koji na temelju informacije o ostalim (lako-mjerljivim) procesnim veličinama procjenjuje trenutni iznos teško-mjerljive veličine. Budući da su procesi po prirodi promjenjivi, točnost estimacije zasnovane na modelu procesa izgra.enog na starim podacima u pravilu opada s vremenom. Kako bi se ovo izbjeglo, parametre modela procesa je potrebno kontinuirano prepodešavati kako bi model što bolje opisivao (trenutno) vladanje procesa. Ovisno o tipu matematičkog modela, za prepodešavanje njegovih parametara na raspolaganju je više metoda. Kao osnova estimatora teško-mjerljive veličine u radu se koristi PLSR model procesa, dok se njegovi parametri prepodešavaju na više načina – metodom pomičnog prozora, rekurzivnim NIPALS algoritmom, rekurzivnim kernel algoritmom te Just-in-Time Learning metodom. Svojstva navedenih metoda adaptacije PLSR modela procesa ispitana su na odabranom primjeru. Nadalje, metode adaptacije su analizirane i s obzirom na računalnu i memorijsku zahtjevnost

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    A Comparative Study of Different Kernel Functions Applied to LW-KPLS Model for Nonlinear Processes

    Get PDF
    Soft sensors are inferential estimators when the employment of hardware sensors is inapplicable, expensive, or difficult in industrial plant processes. Currently, a simple soft sensor, namely locally weighted partial least squares (LW-PLS), which can cope with the nonlinearity of the process, has been developed. However, LW-PLS exhibits the disadvantages of handling strong nonlinear process data. To address this problem, Kernel functions are integrated into LW-PLS to form locally weighted Kernel partial least squares (LW-KPLS). Notice that a minimal study was carried out on the impact of different kernel functions that have not been integrated with the LW-KPLS, in which this model has the potential to be applied to different chemical-related nonlinear processes. Thus, this study investigates the predictive performance of LW-KPLS with several different Kernel functions using three nonlinear case studies. As the results, the predictive performances of LW-KPLS with Polynomial Kernel are better than other Kernel functions. The values of root-mean-square errors (RMSE) and error of approximation (Ea) for the training and testing dataset by utilizing this Kernel function are the lowest in their respective case studies, which are 34.60% to 95.39% lower for RMSEs values and 68.20% to 95.49% smaller for Ea values

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Towards Bayesian System Identification: With Application to SHM of Offshore Structures

    Get PDF
    Within the offshore industry Structural Health Monitoring remains a growing area of interest. The oil and gas sectors are faced with ageing infrastructure and are driven by the desire for reliable lifetime extension, whereas the wind energy sector is investing heavily in a large number of structures. This leads to a number of distinct challenges for Structural Health Monitoring which are brought together by one unifying theme --- uncertainty. The offshore environment is highly uncertain, existing structures have not been monitored from construction and the loading and operational conditions they have experienced (among other factors) are not known. For the wind energy sector, high numbers of structures make traditional inspection methods costly and in some cases dangerous due to the inaccessibility of many wind farms. Structural Health Monitoring attempts to address these issues by providing tools to allow automated online assessment of the condition of structures to aid decision making. The work of this thesis presents a number of Bayesian methods which allow system identification, for Structural Health Monitoring, under uncertainty. The Bayesian approach explicitly incorporates prior knowledge that is available and combines this with evidence from observed data to allow the formation of updated beliefs. This is a natural way to approach Structural Health Monitoring, or indeed, many engineering problems. It is reasonable to assume that there is some knowledge available to the engineer before attempting to detect, locate, classify, or model damage on a structure. Having a framework where this knowledge can be exploited, and the uncertainty in that knowledge can be handled rigorously, is a powerful methodology. The problem being that the actual computation of Bayesian results can pose a significant challenge both computationally and in terms of specifying appropriate models. This thesis aims to present a number of Bayesian tools, each of which leverages the power of the Bayesian paradigm to address a different Structural Health Monitoring challenge. Within this work the use of Gaussian Process models is presented as a flexible nonparametric Bayesian approach to regression, which is extended to handle dynamic models within the Gaussian Process NARX framework. The challenge in training Gaussian Process models is seldom discussed and the work shown here aims to offer a quantitative assessment of different learning techniques including discussions on the choice of cost function for optimisation of hyperparameters and the choice of the optimisation algorithm itself. Although rarely considered, the effects of these choices are demonstrated to be important and to inform the use of a Gaussian Process NARX model for wave load identification on offshore structures. The work is not restricted to only Gaussian Process models, but Bayesian state-space models are also used. The novel use of Particle Gibbs for identification of nonlinear oscillators is shown and modifications to this algorithm are applied to handle its specific use in Structural Health Monitoring. Alongside this, the Bayesian state-space model is used to perform joint input-state-parameter inference for Operational Modal Analysis where the use of priors over the parameters and the forcing function (in the form of a Gaussian Process transformed into a state-space representation) provides a methodology for this output-only identification under parameter uncertainty. Interestingly, this method is shown to recover the parameter distributions of the model without compromising the recovery of the loading time-series signal when compared to the case where the parameters are known. Finally, a novel use of an online Bayesian clustering method is presented for performing Structural Health Monitoring in the absence of any available training data. This online method does not require a pre-collected training dataset, nor a model of the structure, and is capable of detecting and classifying a range of operational and damage conditions while in service. This leaves the reader with a toolbox of methods which can be applied, where appropriate, to identification of dynamic systems with a view to Structural Health Monitoring problems within the offshore industry and across engineering
    corecore