4,314 research outputs found

    A Survey of Super-Resolution in Iris Biometrics With Evaluation of Dictionary-Learning

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe lack of resolution has a negative impact on the performance of image-based biometrics. While many generic super-resolution methods have been proposed to restore low-resolution images, they usually aim to enhance their visual appearance. However, an overall visual enhancement of biometric images does not necessarily correlate with a better recognition performance. Reconstruction approaches thus need to incorporate the specific information from the target biometric modality to effectively improve recognition performance. This paper presents a comprehensive survey of iris super-resolution approaches proposed in the literature. We have also adapted an eigen-patches’ reconstruction method based on the principal component analysis eigen-transformation of local image patches. The structure of the iris is exploited by building a patch-position-dependent dictionary. In addition, image patches are restored separately, having their own reconstruction weights. This allows the solution to be locally optimized, helping to preserve local information. To evaluate the algorithm, we degraded the high-resolution images from the CASIA Interval V3 database. Different restorations were considered, with 15 × 15 pixels being the smallest resolution evaluated. To the best of our knowledge, this is the smallest resolutions employed in the literature. The experimental framework is complemented with six publicly available iris comparators that were used to carry out biometric verification and identification experiments. The experimental results show that the proposed method significantly outperforms both the bilinear and bicubic interpolations at a very low resolution. The performance of a number of comparators attains an impressive equal error rate as low as 5% and a Top-1 accuracy of 77%–84% when considering the iris images of only 15 × 15 pixels. These results clearly demonstrate the benefit of using trained super-resolution techniques to improve the quality of iris images prior to matchingThis work was supported by the EU COST Action under Grant IC1106. The work of F. Alonso-Fernandez and J. Bigun was supported in part by the Swedish Research Council, in part by the Swedish Innovation Agency, and in part by the Swedish Knowledge Foundation through the CAISR/SIDUS-AIR projects. The work of J. Fierrez was supported by the Spanish MINECO/FEDER through the CogniMetrics Project under Grant TEC2015-70627-R. The authors acknowledge the Halmstad University Library for its support with the open access fee

    Feature-domain super-resolution framework for Gabor-based face and iris recognition

    Get PDF
    The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics

    Exploring Deep Learning Image Super-Resolution for Iris Recognition

    Full text link
    In this work we test the ability of deep learning methods to provide an end-to-end mapping between low and high resolution images applying it to the iris recognition problem. Here, we propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN) with the most possible lightweight structure to achieve fast speed, preserve local information and reduce artifacts at the same time. We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.Comment: Published at Proc. 25th European Signal Processing Conference, EUSIPCO 201

    Eigen-patch iris super-resolution for iris recognition improvement

    Get PDF
    Low image resolution will be a predominant factor in iris recognition systems as they evolve towards more relaxed acquisition conditions. Here, we propose a super-resolution technique to enhance iris images based on Principal Component Analysis (PCA) Eigen-transformation of local image patches. Each patch is reconstructed separately, allowing better quality of enhanced images by preserving local information and reducing artifacts. We validate the system used a database of 1,872 near-infrared iris images. Results show the superiority of the presented approach over bilinear or bicubic interpolation, with the eigen-patch method being more resilient to image resolution reduction. We also perform recognition experiments with an iris matcher based 1D Log-Gabor, demonstrating that verification rates degrades more rapidly with bilinear or bicubic interpolation.peer-reviewe

    Reconstruction of smartphone images for low resolution iris recognition

    Get PDF
    As iris systems evolve towards a more relaxed acquisition, low image resolution will be a predominant issue. In this paper we evaluate a super-resolution method to reconstruct iris images based on Eigen-transformation of local image patches. Each patch is reconstructed separately, allowing better quality of enhanced images by preserving local information. We employ a database of 560 images captured in visible spectrum with two smartphones. The presented approach is superior to bilinear or bicubic interpolation, specially at lower resolutions. We also carry out recognition experiments with six iris matchers, showing that better performance can be obtained at low-resolutions with the proposed eigen-patch reconstruction, with fusion of only two systems pushing the EER to below 5-8% for down-sampling factors up to a size of only 13×13.peer-reviewe

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future
    • …
    corecore