177 research outputs found

    Rate Aware Instantly Decodable Network Codes

    Get PDF
    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications and abstract the model as equally slotted time for all users, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The consideration of asymmetric rates for receivers reflects more practical application scenarios and introduces a new trade-off between the choice of coding combinations for various receivers and the broadcasting rate for achieving shorter completion time. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. The highest weight clique in the created graph being potentially not unique, the paper further suggests a multi-layer version of the proposed solution to improve the obtained results from the employed completion time approximation. Simulation results indicate that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme

    Delivery Time Reduction for Order-Constrained Applications using Binary Network Codes

    Full text link
    Consider a radio access network wherein a base-station is required to deliver a set of order-constrained messages to a set of users over independent erasure channels. This paper studies the delivery time reduction problem using instantly decodable network coding (IDNC). Motivated by time-critical and order-constrained applications, the delivery time is defined, at each transmission, as the number of undelivered messages. The delivery time minimization problem being computationally intractable, most of the existing literature on IDNC propose sub-optimal online solutions. This paper suggests a novel method for solving the problem by introducing the delivery delay as a measure of distance to optimality. An expression characterizing the delivery time using the delivery delay is derived, allowing the approximation of the delivery time minimization problem by an optimization problem involving the delivery delay. The problem is, then, formulated as a maximum weight clique selection problem over the IDNC graph wherein the weight of each vertex reflects its corresponding user and message's delay. Simulation results suggest that the proposed solution achieves lower delivery and completion times as compared to the best-known heuristics for delivery time reduction

    Completion Time Reduction in Instantly Decodable Network Coding Through Decoding Delay Control

    Full text link
    For several years, the completion time and decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users' and overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we design a novel heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios

    Centralized and Cooperative Transmission of Secure Multiple Unicasts using Network Coding

    Full text link
    We introduce a method for securely delivering a set of messages to a group of clients over a broadcast erasure channel where each client is interested in a distinct message. Each client is able to obtain its own message but not the others'. In the proposed method the messages are combined together using a special variant of random linear network coding. Each client is provided with a private set of decoding coefficients to decode its own message. Our method provides security for the transmission sessions against computational brute-force attacks and also weakly security in information theoretic sense. As the broadcast channel is assumed to be erroneous, the missing coded packets should be recovered in some way. We consider two different scenarios. In the first scenario the missing packets are retransmitted by the base station (centralized). In the second scenario the clients cooperate with each other by exchanging packets (decentralized). In both scenarios, network coding techniques are exploited to increase the total throughput. For the case of centralized retransmissions we provide an analytical approximation for the throughput performance of instantly decodable network coded (IDNC) retransmissions as well as numerical experiments. For the decentralized scenario, we propose a new IDNC based retransmission method where its performance is evaluated via simulations and analytical approximation. Application of this method is not limited to our special problem and can be generalized to a new class of problems introduced in this paper as the cooperative index coding problem

    A Graph Model for Opportunistic Network Coding

    Full text link
    Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance

    Throughput Maximization in Cloud Radio Access Networks using Network Coding

    Get PDF
    This paper is interested in maximizing the total throughput of cloud radio access networks (CRANs) in which multiple radio remote heads (RRHs) are connected to a central computing unit known as the cloud. The transmit frame of each RRH consists of multiple radio resources blocks (RRBs), and the cloud is responsible for synchronizing these RRBS and scheduling them to users. Unlike previous works that consider allocating each RRB to only a single user at each time instance, this paper proposes to mix the flows of multiple users in each RRB using instantly decodable network coding (IDNC). The proposed scheme is thus designed to jointly schedule the users to different RRBs, choose the encoded file sent in each of them, and the rate at which each of them is transmitted. Hence, the paper maximizes the throughput which is defined as the number of correctly received bits. To jointly fulfill this objective, we design a graph in which each vertex represents a possible user-RRB association, encoded file, and transmission rate. By appropriately choosing the weights of vertices, the scheduling problem is shown to be equivalent to a maximum weight clique problem over the newly introduced graph. Simulation results illustrate the significant gains of the proposed scheme compared to classical coding and uncoded solutions.Comment: 7 pages, 7 figure

    Delay Minimization for Instantly Decodable Network Coding in Persistent Channels with Feedback Intermittence

    Full text link
    In this paper, we consider the problem of minimizing the multicast decoding delay of generalized instantly decodable network coding (G-IDNC) over persistent forward and feedback erasure channels with feedback intermittence. In such an environment, the sender does not always receive acknowledgement from the receivers after each transmission. Moreover, both the forward and feedback channels are subject to persistent erasures, which can be modelled by a two state (good and bad states) Markov chain known as Gilbert-Elliott channel (GEC). Due to such feedback imperfections, the sender is unable to determine subsequent instantly decodable packets combination for all receivers. Given this harsh channel and feedback model, we first derive expressions for the probability distributions of decoding delay increments and then employ these expressions in formulating the minimum decoding problem in such environment as a maximum weight clique problem in the G-IDNC graph. We also show that the problem formulations in simpler channel and feedback models are special cases of our generalized formulation. Since this problem is NP-hard, we design a greedy algorithm to solve it and compare it to blind approaches proposed in literature. Through extensive simulations, our adaptive algorithm is shown to outperform the blind approaches in all situations and to achieve significant improvement in the decoding delay, especially when the channel is highly persisten

    Instantly Decodable Network Coding for Real-Time Scalable Video Broadcast over Wireless Networks

    Full text link
    In this paper, we study a real-time scalable video broadcast over wireless networks in instantly decodable network coded (IDNC) systems. Such real-time scalable video has a hard deadline and imposes a decoding order on the video layers.We first derive the upper bound on the probability that the individual completion times of all receivers meet the deadline. Using this probability, we design two prioritized IDNC algorithms, namely the expanding window IDNC (EW-IDNC) algorithm and the non-overlapping window IDNC (NOW-IDNC) algorithm. These algorithms provide a high level of protection to the most important video layer before considering additional video layers in coding decisions. Moreover, in these algorithms, we select an appropriate packet combination over a given number of video layers so that these video layers are decoded by the maximum number of receivers before the deadline. We formulate this packet selection problem as a two-stage maximal clique selection problem over an IDNC graph. Simulation results over a real scalable video stream show that our proposed EW-IDNC and NOW-IDNC algorithms improve the received video quality compared to the existing IDNC algorithms
    • …
    corecore