3,161 research outputs found

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices.

    Get PDF
    Computational theories propose that attention modulates the topographical landscape of spatial 'priority' maps in regions of the visual cortex so that the location of an important object is associated with higher activation levels. Although studies of single-unit recordings have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here we used functional magnetic resonance imaging and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Perceptual Fidelity for Digital Color Imagery

    Get PDF
    The problem of measuring the fidelity of digital color images in a manner that corresponds to human perceptual assessments is addressed. Experiments are performed to validate human visual system (HVS) models, which provide access to a \u27perceptual space\u27 in which visual distortions may be measured, and then a model is proposed for assessing the perceptual fidelity of digital color image. Color Mach bands are produced in the first experiment, demonstrating that, as in the brightness channel, low spatial frequency attenuation occurs in the chromatic channels of the HVS. In the second experiment, a correlation between the chromatic channels of the HVS model and color discrimination axes of color blind observers is demonstrated. Removing variation from one of the chromatic channels of a natural image produces a color-distorted image which the color blind subjects cannot distinguish from the original. Removing variation from the other chromatic channel produces an image that appears colorful to normally-sighted observers, but monochrome to the color blind observers. The third experiment shows that a Gabor filter-based HVS model produces illusory contours in several illusory contour stimuli. These results provide a unique validation of multiple-channel HVS models which process the image in multiple spatial frequency bands that are tuned to match measured sensitivities of neurons in the primary visual cortex of cats and monkeys. Finally, the multiple-channel processing used in the illusory contour experiment is combined with the color vision model from the first two experiments to produce a multiple-channel, color HVS model for measuring perceptual fidelity of color images. A demonstration of the model shows that the structure of the new model is correct. However, inaccurate parameter values for the multiple-channel processing of the chromatic channels cause over-prediction of visible differences in these channels

    Enlightened Romanticism: Mary Gartside’s colour theory in the age of Moses Harris, Goethe and George Field

    Get PDF
    The aim of this paper is to evaluate the work of Mary Gartside, a British female colour theorist, active in London between 1781 and 1808. She published three books between 1805 and 1808. In chronological and intellectual terms Gartside can cautiously be regarded an exemplary link between Moses Harris, who published a short but important theory of colour in the second half of the eighteenth century, and J.W. von Goethe’s highly influential Zur Farbenlehre, published in Germany in 1810. Gartside’s colour theory was published privately under the disguise of a traditional water colouring manual, illustrated with stunning abstract colour blots (see example above). Until well into the twentieth century, she remained the only woman known to have published a theory of colour. In contrast to Goethe and other colour theorists in the late 18th and early 19th century Gartside was less inclined to follow the anti-Newtonian attitudes of the Romantic movement

    Detecting emotional expressions: Do words help?

    Get PDF

    Providing 3D video services: the challenge from 2D to 3DTV quality of experience

    Get PDF
    Recently, three-dimensional (3D) video has decisively burst onto the entertainment industry scene, and has arrived in households even before the standardization process has been completed. 3D television (3DTV) adoption and deployment can be seen as a major leap in television history, similar to previous transitions from black and white (B&W) to color, from analog to digital television (TV), and from standard definition to high definition. In this paper, we analyze current 3D video technology trends in order to define a taxonomy of the availability and possible introduction of 3D-based services. We also propose an audiovisual network services architecture which provides a smooth transition from two-dimensional (2D) to 3DTV in an Internet Protocol (IP)-based scenario. Based on subjective assessment tests, we also analyze those factors which will influence the quality of experience in those 3D video services, focusing on effects of both coding and transmission errors. In addition, examples of the application of the architecture and results of assessment tests are provided

    Visual attention in the real world

    Get PDF
    Humans typically direct their gaze and attention at locations important for the tasks they are engaged in. By measuring the direction of gaze, the relative importance of each location can be estimated which can reveal how cognitive processes choose where gaze is to be directed. For decades, this has been done in laboratory setups, which have the advantage of being well-controlled. Here, visual attention is studied in more life-like situations, which allows testing ecological validity of laboratory results and allows the use of real-life setups that are hard to mimic in a laboratory. All four studies in this thesis contribute to our understanding of visual attention and perception in more complex situations than are found in the traditional laboratory experiments. Bottom-up models of attention use the visual input to predict attention or even the direction of gaze. In such models the input image is analyzed for each of several features first. In the classic Saliency Map model, these features are color contrast, luminance contrast and orientation contrast. The “interestingness” of each location in the image is represented in a ‘conspicuity maps’, one for each feature. The Saliency Map model then combines these conspicuity maps by linear addition, and this additivity has recently been challenged. The alternative is to use the maxima across all conspicuity maps. In the first study, the features color contrast and luminance contrast were manipulated in photographs of natural scenes to test which of these mechanisms is the best predictor of human behavior. It was shown that a linear addition, as in the original model, matches human behavior best. As all the assumptions of the Saliency Map model on the processes preceding the linear addition of the conspicuity maps are based on physiological research, this result constrains future models in their mechanistic assumption. If models of visual attention are to have ecological validity, comparing visual attention in laboratory and real-world conditions is necessary, and this is done in the second study. In the first condition, eye movements and head-centered, first-person perspective movies were recorded while participants explored 15 real-world environments (“free exploration”). Clips from these movies were shown to participants in two laboratory tasks. First, the movies were replayed as they were recorded (“video replay”), and second, a shuffled selection of frames was shown for 1 second each (“1s frame replay”). Eye-movement recordings from all three conditions revealed that in comparison to 1s frame replay, the video replay condition was qualitatively more alike to the free exploration condition with respect to the distribution of gaze and the relationship between gaze and model saliency and was quantitatively better able to predict free exploration gaze. Furthermore, the onset of a new frame in 1s frame replay evoked a reorientation of gaze towards the center. That is, the event of presenting a stimulus in a laboratory setup affects attention in a way unlikely to occur in real life. In conclusion, video replay is a better model for real-world visual input. The hypothesis that walking on more irregular terrain requires visual attention to be directed at the path more was tested on a local street (“Hirschberg”) in the third study. Participants walked on both sides of this inclined street; a cobbled road and the immediately adjacent, irregular steps. The environment and instructions were kept constant. Gaze was directed at the path more when participants walked on the steps as compared to the road. This was accomplished by pointing both the head and the eyes lower on the steps than on the road, while only eye-in-head orientation was spread out along the vertical more on the steps, indicating more or large eye movements on the more irregular steps. These results confirm earlier findings that eye and head movements play distinct roles in directing gaze in real-world situations. Furthermore, they show that implicit tasks (not falling, in this case) affect visual attention as much as explicit tasks do. In the last study it is asked if actions affect perception. An ambiguous stimulus that is alternatively perceived as rotating clockwise or counterclockwise (the ‘percept’) was used. When participants had to rotate a manipulandum continuously in a pre-defined direction – either clockwise or counterclockwise – and reported their concurrent percept with a keyboard, percepts weren’t affected by movements. If participants had to use the manipulandum to indicate their percept – by rotating either congruently or incongruently with the percept – the movements did affect perception. This shows that ambiguity in visual input is resolved by relying on motor signals, but only when they are relevant for the task at hand. Either by using natural stimuli, by comparing behavior in the laboratory with behavior in the real world, by performing an experiment on the street, or by testing how two diverse but everyday sources of information are integrated, the faculty of vision was studied in more life like situations. The validity of some laboratory work has been examined and confirmed and some first steps in doing experiments in real-world situations have been made. Both seem to be promising approaches for future research
    • 

    corecore