6,979 research outputs found

    Can Unlicensed Bands Be Used by Unlicensed Usage?

    Get PDF
    Since their introduction, unlicensed ISM bands have resulted in a wide range of new wireless devices and services. It is fair to say that the success of ISM was an important factor in the opening of the TV white space for unlicensed access. Further bands (e.g., 3550-3650 MHz) are being studied to support unlicensed access. Expansion of the unlicensed bands may well address one of the principle disadvantages of unlicensed (variable quality of service) which could result in a vibrant new group companies providing innovative services and better prices. However, given that many commercial mobile telephone operators are relying heavily on the unlicensed bands to manage growth in data traffic through the “offloading” strategy, the promise of these bands may be more limited than might otherwise be expected (Musey, 2013).\ud \ud Wireless data traffic has exploded in the past several years due to more capable devices and faster network technologies. While there is some debate on the trajectory of data growth, some notable reports include AT&T, which reported data growth of over 5000% from 2008 to 2010 and Cisco, who predicted that mobile data traffic will grow to 6.3 exabytes per month in average by 2015 (Hu, 2012). Although the data traffic increased dramatically, relatively little new spectrum for mobile operators has come online in the last several years; further, the “flat-rate” pricing strategy has led to declining Average Revenue Per User (ARPU) for the mobile operators. Their challenge, then, is how to satisfy the service demand with acceptable additional expenditures on infrastructure and spectrum utilization.\ud \ud A common response to this challenge has been to offload data traffic onto unlicensed (usually WiFi) networks. This can be accomplished either by establishing infrastructure (WiFi hotspots) or to use existing private networks. This phenomenon leads to two potential risks for spectrum entrants: (1) the use of offloading may overwhelm unlicensed spectrum and leave little access opportunities for newcomers; (2) the intensity of the traffic may increase interference and degrade innovative services.\ud \ud Consequently, opening more unlicensed frequency bands alone may not necessarily lead to more unlicensed usage. In this paper, we will estimate spectrum that left for unlicensed usage and analyze risks for unlicensed users in unlicensed bands in terms of access opportunities and monetary gain. We will further provide recommendations that help foster unlicensed usage in unlicensed bands

    Wi-Fi Offload: Tragedy of the Commons or Land of Milk and Honey?

    Full text link
    Fueled by its recent success in provisioning on-site wireless Internet access, Wi-Fi is currently perceived as the best positioned technology for pervasive mobile macro network offloading. However, the broad transitions of multiple collocated operators towards this new paradigm may result in fierce competition for the common unlicensed spectrum at hand. In this light, our paper game-theoretically dissects market convergence scenarios by assessing the competition between providers in terms of network performance, capacity constraints, cost reductions, and revenue prospects. We will closely compare the prospects and strategic positioning of fixed line operators offering Wi-Fi services with respect to competing mobile network operators utilizing unlicensed spectrum. Our results highlight important dependencies upon inter-operator collaboration models, and more importantly, upon the ratio between backhaul and Wi-Fi access bit-rates. Furthermore, our investigation of medium- to long-term convergence scenarios indicates that a rethinking of control measures targeting the large-scale monetization of unlicensed spectrum may be required, as otherwise the used free bands may become subject to tragedy-of-commons type of problems.Comment: Workshop on Spectrum Sharing Strategies for Wireless Broadband Services, IEEE PIMRC'13, to appear 201

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Next Generation M2M Cellular Networks: Challenges and Practical Considerations

    Get PDF
    In this article, we present the major challenges of future machine-to-machine (M2M) cellular networks such as spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices. As being an integral part of the future Internet-of-Things (IoT), the true vision of M2M communications cannot be reached with conventional solutions that are typically cost inefficient. Cognitive radio concept has emerged to significantly tackle the spectrum under-utilization or scarcity problem. Heterogeneous network model is another alternative to relax the number of covered users. To this extent, we present a complete fundamental understanding and engineering knowledge of cognitive radios, heterogeneous network model, and power and cost challenges in the context of future M2M cellular networks

    The Case for Liberal Spectrum Licenses: A Technical and Economic Perspective

    Get PDF
    The traditional system of radio spectrum allocation has inefficiently restricted wireless services. Alternatively, liberal licenses ceding de facto spectrum ownership rights yield incentives for operators to maximize airwave value. These authorizations have been widely used for mobile services in the U.S. and internationally, leading to the development of highly productive services and waves of innovation in technology, applications and business models. Serious challenges to the efficacy of such a spectrum regime have arisen, however. Seeing the widespread adoption of such devices as cordless phones and wi-fi radios using bands set aside for unlicensed use, some scholars and policy makers posit that spectrum sharing technologies have become cheap and easy to deploy, mitigating airwave scarcity and, therefore, the utility of exclusive rights. This paper evaluates such claims technically and economically. We demonstrate that spectrum scarcity is alive and well. Costly conflicts over airwave use not only continue, but have intensified with scientific advances that dramatically improve the functionality of wireless devices and so increase demand for spectrum access. Exclusive ownership rights help direct spectrum inputs to where they deliver the highest social gains, making exclusive property rules relatively more socially valuable. Liberal licenses efficiently accommodate rival business models (including those commonly associated with unlicensed spectrum allocations) while mitigating the constraints levied on spectrum use by regulators imposing restrictions in traditional licenses or via use rules and technology standards in unlicensed spectrum allocations.
    corecore