74,914 research outputs found

    Situation-aware routing for wireless mesh networks with mobile nodes

    Get PDF
    This paper describes a situation-aware algorithm based on the current situation of a mesh network with mobile nodes that improves quality of service. After running laboratory performance tests, we concluded that a situation-aware mesh routing protocol offers potential to address issues pertaining to mobility, congestion and scalability in dynamic mesh networks with mobile nodes. Such networks appear promising to provide connectivity to people living in rural areas in developing regions of Africa, and can be easily interconnected to telco-styled networks through gateways for voice and Internet services. Such services can remain free in the mesh, yet can also be billed for interconnection. Our vision offers an attractive business model for up scaling a rural customer base for telcos, while at the same time offering increased quality of service for mobile users on rural mesh networks.Telkom, Cisco, Aria Technologies, THRI

    A Novel QoS Guarantee Mechanism in IEEE 802.16 Mesh Networks

    Get PDF
    IEEE 802.16 defines perfect QoS (Quality of Service) guarantee mechanism in PMP (Point to Multi-Point) mode and denotes mesh mode cannot provide this capability. To resolve this problem of WiMAX Mesh network, a novel QoS guarantee mechanism including protocol process and minislot allocation algorithm is proposed. This mechanism uses existing service classes in original standard. Protocol processes that manage dynamic service flow are defined. WiMAX MAC layer is re-designed to support service classification in mesh mode. Using extended distributed scheduling messages, the delivery method of dynamic service management messages in WiMAX mesh networks is implemented. Minislot allocation algorithm is given to support data scheduling of various services. Service establishment time is analyzed in this paper. The simulation result shows that the mechanism can provide QoS in WiMAX mesh networks effectively

    Optimisation of routing protocols for Wireless Mesh Networks (WMNs) to achieve higher quality of service for real time applications

    Get PDF
    The existing routing protocols for WMNs (Wireless Mesh Networks) are extensions of protocols originally designed for Mobile Ad-hoc Networks (MANETs) and perform sub-optimally for the mesh connectivity of WMNs which degrades their performance in terms of increased latency in packet delivery, packet drops and decreased network throughput. The proposed research, currently at its inception, would investigate into capacity and limitations of current WMN routing protocols with respect to wireless technologies, platforms and relevant standards in context of routing requirements of identified real-time applications, namely, the disaster management and tele-health applications. The research would optimise the existing routing protocols for WMNs for the proposed applications to achieve higher quality of service, reliability and security of data access to meet their specialist requirements. Wireless Mesh Networks (WMNs) are increasingly being incorporated in disaster management solutions for access to information of disaster situation to improve effectiveness of rescue services. Currently, the routing requirements of disaster solution using WMN has been researched in context of active research project, “iSurvival- Mobile Mesh Networks for Disaster Management” , which utilises specialist applications on smart phones of end-users in the disaster area to establish WMNs using available heterogeneous wireless technologies from 3G, Wi-Fi, Bluetooth and others. These WMNs provide resilient and reconfigurable digital infrastructures, with users’ smart phones acting as routers in the connected mesh networks to facilitate routing and forwarding of information in the disaster are

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Performance Analysis of QoS in PMP Mode WiMax Networks

    Get PDF
    IEEE 802.16 standard supports two different topologies: point to multipoint (PMP) and Mesh. In this paper, a QoS mechanism for point to multipoint of IEEE 802.16 and BS scheduler for PMP Mode is proposed. This paper also describes quality of service over WiMAX networks. Average WiMAX delay, Average WiMAX load and Average WiMAX throughput at base station is analyzed and compared by applying different scheduler at Base station and at fixed nodes

    An analysis of voice over internet protocol in wireless mesh networks

    Get PDF
    Magister Scientiae - MScThis thesis presents an analysis of the impact of node mobility on the quality of service for voice over Internet Protocol in wireless mesh networks. Voice traffic was simulated on such a mesh network to analyze the following performance metrics: delay, jitter, packet loss and throughput. Wireless mesh networks present interesting characteristics such as multi-hop routing, node mobility, and variable coverage that can impact on quality of service. A reasonable deployment scenario for a small organizational network, for either urban or rural deployment, is considered with three wireless mesh network scenarios, each with 26 mesh nodes. In the first scenario, all mesh nodes are stationary. In the second scenario, 10 nodes are mobile and 16 nodes are stationary. Finally, in the third scenario, all mesh nodes are mobile. The mesh nodes are simulated to move at a walking speed of 1.3m per second. The results show that node mobility can increase packet loss, delay, and jitter. However, the results also show that wireless mesh networks can provide acceptable quality of service, providing that there is little or no background traffic generated by other applications. In particular, the results demonstrate that jitter across all scenarios remains within humanacceptable tolerances. It is therefore recommended that voice over Internet Protocol implementations on wireless mesh networks with background traffic be supported by quality of service standards; otherwise they can lead to service delivery failures. On the other hand, voice-only esh networks, even with mobile nodes, offer an attractive alternative voice over Internet Protocol platform.South Afric

    Packet aggregation for voice over internet protocol on wireless mesh networks

    Get PDF
    >Magister Scientiae - MScThis thesis validates that packet aggregation is a viable technique to increase call ca-pacity for Voice over Internet Protocol over wireless mesh networks. Wireless mesh networks are attractive ways to provide voice services to rural communities. Due to the ad-hoc routing nature of mesh networks, packet loss and delay can reduce voice quality.Even on non-mesh networks, voice quality is reduced by high overhead, associated with the transmission of multiple small packets. Packet aggregation techniques are proven to increase VoIP performance and thus can be deployed in wireless mesh networks. Kernel level packet aggregation was initially implemented and tested on a small mesh network of PCs running Linux, and standard baseline vs. aggregation tests were conducted with a realistic voice tra c pro le in hop-to-hop mode. Modi cations of the kernel were then transferred to either end of a nine node 'mesh potato' network and those tests were conducted with only the end nodes modi ed to perform aggregation duties. Packet ag- gregation increased call capacity expectedly, while quality of service was maintained in both instances, and hop-to-hop aggregation outperformed the end-to-end con guration. However, implementing hop-to-hop in a scalable fashion is prohibitive, due to the extensive kernel level debugging that must be done to achieve the call capacity increase.Therefore, end-to-end call capacity increase is an acceptable compromise for eventual scalable deployment of voice over wireless mesh networks

    QoS Variance Aware Spectrum Sensing and Allocation Strategy for Cognitive Radio Wireless Mesh Networks

    Get PDF
    QoS (Quality of Service) aware spectrum sensing and channel allocation in cognitive radio wireless mesh networks is a continuous practice due to the divergent scope of communication in wireless mesh networks. Henceforth the current research is moving in a direction to find effective solutions towards QoS aware spectrum sensing and channel allocation. But all of these solutions are specific to one or two QoS factors. According to the real-time practices the QoS assessment by one or two factors is impractical

    Design of a UMTS/GPRS Assisted Mesh Network (UAMN)

    Get PDF
    Wireless Mesh or multi-hop networks (WMNs) are well known thanks to its simplicity on deployment and the lack of infrastructure. These two advantages come with some drawbacks. WMNs have limitations with the support of Quality of Service (QoS), they do not assure coverage or even connectivity, and security, management and monitoring are not considered key requirements. In order to benefit of mesh networks and use them as an operator graded network, it is necessary to either improve mesh networks to fulfill all these requirements or use an alternative network that offers full availability, connectivity and security to assist the mesh network. Considering the two options, the second is the one selected making use of GPRS/UMTS as an assistant network. The document describes a set of requirements and the design of the functionalities needed to build an operator graded network using the cellular GPRS/UMTS. The aspects covered in the design are: security, quality of service, mobility, self configuration and optimization. The last point, optimization, is not directly involved with mesh networking, but it is an improvement easy to achieve when using a gateway node to access the Internet through a GPRS/UMTS connection. The design of the solution not only considers functionality, but also feasibility employing of the shelve elements. The mesh nodes and gateways are built on top of Linux operating system with the aim to reuse previous results and open source software. The final objective of the project is to build a usable system to be used as a proof of concept.Peer Reviewe
    • …
    corecore