39,232 research outputs found

    Addressing Risk and Uncertainty in Water Quality Trading Markets

    Get PDF
    Across the United States, water quality trading is being explored as a mechanism for reducing the costs of cleaning up impaired waterbodies. Trading between point sources, such as wastewater treatment plants, and nonpoint sources, such as agriculture, can cut costs for regulated entities needing to reduce pollutants, and generate revenue for agricultural producers who generate credits. However, water quality trading, particularly between point and nonpoint sources, can face inherent uncertainties around quantification of nonpoint source reductions, participant behavior, regulations, and market supply and demand. Effectively addressing uncertainties is crucial to ensuring the success of these markets and improving water quality. This paper establishes a framework from which to engage federal and state agencies, program developers, and stakeholders in a dialogue about these uncertainties and appropriate mechanisms for addressing them

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Archiving the Relaxed Consistency Web

    Full text link
    The historical, cultural, and intellectual importance of archiving the web has been widely recognized. Today, all countries with high Internet penetration rate have established high-profile archiving initiatives to crawl and archive the fast-disappearing web content for long-term use. As web technologies evolve, established web archiving techniques face challenges. This paper focuses on the potential impact of the relaxed consistency web design on crawler driven web archiving. Relaxed consistent websites may disseminate, albeit ephemerally, inaccurate and even contradictory information. If captured and preserved in the web archives as historical records, such information will degrade the overall archival quality. To assess the extent of such quality degradation, we build a simplified feed-following application and simulate its operation with synthetic workloads. The results indicate that a non-trivial portion of a relaxed consistency web archive may contain observable inconsistency, and the inconsistency window may extend significantly longer than that observed at the data store. We discuss the nature of such quality degradation and propose a few possible remedies.Comment: 10 pages, 6 figures, CIKM 201

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing

    Perceived synchronization of mulsemedia services

    Get PDF
    Multimedia synchronization involves a temporal relationship between audio and visual media components. The presentation of "in-sync" data streams is essential to achieve a natural impression, as "out-of-sync" effects are often associated with user quality of experience (QoE) decrease. Recently, multi-sensory media (mulsemedia) has been demonstrated to provide a highly immersive experience for its users. Unlike traditional multimedia, mulsemedia consists of other media types (i.e., haptic, olfaction, taste, etc.) in addition to audio and visual content. Therefore, the goal of achieving high quality mulsemedia transmission is to present no or little synchronization errors between the multiple media components. In order to achieve this ideal synchronization, there is a need for comprehensive knowledge of the synchronization requirements at the user interface. This paper presents the results of a subjective study carried out to explore the temporal boundaries within which haptic and air-flow media objects can be successfully synchronized with video media. Results show that skews between sensorial media and multimedia might still give the effect that the mulsemedia sequence is "in-sync" and provide certain constraints under which synchronization errors might be tolerated. The outcomes of the paper are used to provide recommendations for mulsemedia service providers in order for their services to be associated with acceptable user experience levels, e.g. haptic media could be presented with a delay of up to 1 s behind video content, while air-flow media could be released either 5 s ahead of or 3 s behind video content
    corecore