609 research outputs found

    Comparing objective visual quality impairment detection in 2D and 3D video sequences

    Get PDF
    The skill level of teleoperator plays a key role in the telerobotic operation. However, plenty of experiments are required to evaluate the skill level in a conventional assessment. In this paper, a novel brain-based method of skill assessment is introduced, and the relationship between the teleoperator's brain states and skill level is first investigated based on a kernel canonical correlation analysis (KCCA) method. The skill of teleoperator (SoT) is defined by a statistic method using the cumulative probability function (CDF). Five indicators are extracted from the electroencephalo-graph (EEG) of the teleoperator to represent the brain states during the telerobotic operation. By using the KCCA algorithm in modeling the relationship between the SoT and the brain states, the correlation has been proved. During the telerobotic operation, the skill level of teleoperator can be well predicted through the brain states. © 2013 IEEE.Link_to_subscribed_fulltex

    Providing 3D video services: the challenge from 2D to 3DTV quality of experience

    Get PDF
    Recently, three-dimensional (3D) video has decisively burst onto the entertainment industry scene, and has arrived in households even before the standardization process has been completed. 3D television (3DTV) adoption and deployment can be seen as a major leap in television history, similar to previous transitions from black and white (B&W) to color, from analog to digital television (TV), and from standard definition to high definition. In this paper, we analyze current 3D video technology trends in order to define a taxonomy of the availability and possible introduction of 3D-based services. We also propose an audiovisual network services architecture which provides a smooth transition from two-dimensional (2D) to 3DTV in an Internet Protocol (IP)-based scenario. Based on subjective assessment tests, we also analyze those factors which will influence the quality of experience in those 3D video services, focusing on effects of both coding and transmission errors. In addition, examples of the application of the architecture and results of assessment tests are provided

    Subjective assessment of super multiview video with coding artifacts

    Get PDF
    The subjective assessment of super multiview (SMV) video considers two main perceptual factors: image quality and visual comfort at the viewpoint transition. While previous works only covered raw content with high levels of visual comfort, this work supersedes them by targeting the subjective assessment of SMV content with coding artifacts. The outcome of this analysis yields important conclusions regarding the relationship between these two factors, indicating that 1) the perceived image quality is independent from the view point change speed, and 2) the perceived visual comfort at the view point transition is independent from the image quality. These conclusions facilitate the extension of the scope of existing subjective perception models, designed for raw SMV content, to coded content

    New visual coding exploration in MPEG: Super-MultiView and free navigation in free viewpoint TV

    Get PDF
    ISO/IEC MPEG and ITU-T VCEG have recently jointly issued a new multiview video compression standard, called 3D-HEVC, which reaches unpreceded compression performances for linear,dense camera arrangements. In view of supporting future highquality,auto-stereoscopic 3D displays and Free Navigation virtual/augmented reality applications with sparse, arbitrarily arranged camera setups, innovative depth estimation and virtual view synthesis techniques with global optimizations over all camera views should be developed. Preliminary studies in response to the MPEG-FTV (Free viewpoint TV) Call for Evidence suggest these targets are within reach, with at least 6% bitrate gains over 3DHEVC technology

    Efficient rendering for three-dimensional displays

    Get PDF
    This thesis explores more efficient methods for visualizing point data sets on three-dimensional (3D) displays. Point data sets are used in many scientific applications, e.g. cosmological simulations. Visualizing these data sets in {3D} is desirable because it can more readily reveal structure and unknown phenomena. However, cutting-edge scientific point data sets are very large and producing/rendering even a single image is expensive. Furthermore, current literature suggests that the ideal number of views for 3D (multiview) displays can be in the hundreds, which compounds the costs. The accepted notion that many views are required for {3D} displays is challenged by carrying out a novel human factor trials study. The results suggest that humans are actually surprisingly insensitive to the number of viewpoints with regard to their task performance, when occlusion in the scene is not a dominant factor. Existing stereoscopic rendering algorithms can have high set-up costs which limits their use and none are tuned for uncorrelated {3D} point rendering. This thesis shows that it is possible to improve rendering speeds for a low number of views by perspective reprojection. The novelty in the approach described lies in delaying the reprojection and generation of the viewpoints until the fragment stage of the pipeline and streamlining the rendering pipeline for points only. Theoretical analysis suggests a fragment reprojection scheme will render at least 2.8 times faster than na\"{i}vely re-rendering the scene from multiple viewpoints. Building upon the fragment reprojection technique, further rendering performance is shown to be possible (at the cost of some rendering accuracy) by restricting the amount of reprojection required according to the stereoscopic resolution of the display. A significant benefit is that the scene depth can be mapped arbitrarily to the perceived depth range of the display at no extra cost than a single region mapping approach. Using an average case-study (rendering from a 500k points for a 9-view High Definition 3D display), theoretical analysis suggests that this new approach is capable of twice the performance gains than simply reprojecting every single fragment, and quantitative measures show the algorithm to be 5 times faster than a naĂŻve rendering approach. Further detailed quantitative results, under varying scenarios, are provided and discussed

    A QUALITY ASSESSMENT PROTOCOL FOR FREE-VIEWPOINT VIDEO SEQUENCES SYNTHESIZED FROM DECOMPRESSED DEPTH DATA

    Get PDF
    International audienceIn this paper, the analysis of a subjective quality experiment consisting in assessing the quality of free-viewpoint video sequences generated from decompressed depth data is pre- sented. In the absence of a dedicated subjective assessment protocol for the evaluation of such 3D systems, a subjective quality assessment methodology is proposed for the context of MVD compression. The proposed methodology includes the assessment of free-viewpoint video sequences generated from decompressed depth data and from view synthesis pro- cesses. The proposed methodology is meant to assess the per- formances of depth map compression and view synthesis al- gorithms
    • 

    corecore