59,628 research outputs found

    The impact of specialty settings on the perceived quality of medical ultrasound video

    Get PDF
    Health care professionals are increasingly viewing medical images and videos in a variety of environments. The perception of medical visual information across all specialties, career stages, and practice settings are critical to patient care and patient safety. Visual signal distortions, such as various types of noise and artifacts arising in medical imaging, affect the perceptual quality of visual content and potentially impact diagnoses. To optimize clinical practice, it is of fundamental importance to understand the way medical experts perceive visual quality. Psychophysical studies have been undertaken to evaluate the impact of visual distortions on the perceived quality of medical images and videos. However, very little research has been conducted on how speciality settings affect the perception of visual quality. In this paper, we investigate whether and how radiologists and sonographers differently perceive the quality of compressed ultrasound videos, via a dedicated subjective experiment. The findings can be used to develop useful solutions for improved visual experience and better image-based diagnoses

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    The impact of specialty settings on the perceived quality of medical ultrasound video

    Get PDF
    Health care professionals are increasingly viewing medical images and videos in a variety of environments. The perception of medical visual information across all specialties, career stages, and practice settings are critical to patient care and patient safety. Visual signal distortions, such as various types of noise and artifacts arising in medical imaging, affect the perceptual quality of visual content and potentially impact diagnoses. To optimize clinical practice, it is of fundamental importance to understand the way medical experts perceive visual quality. Psychophysical studies have been undertaken to evaluate the impact of visual distortions on the perceived quality of medical images and videos. However, very little research has been conducted on how speciality settings affect the perception of visual quality. In this paper, we investigate whether and how radiologists and sonographers differently perceive the quality of compressed ultrasound videos, via a dedicated subjective experiment. The findings can be used to develop useful solutions for improved visual experience and better image-based diagnoses

    Differential Image Compression for Telemedicine: A Novel Approach

    Get PDF
    Telemedicine is one of the most emerging technologies of applied medical sciences. Medical information related to patients is transmitted and stored for references and consultations. Medical images occupy huge space; in order to transmit these images may delay the process of image transmission in critical times. Image compression techniques provide a better solution to combat bandwidth scarcity problems, and transmit same image in a much lower bandwidth requirements, more faster and at the same time maintain quality. In this paper a differential image compression method is developed in which medical images are taken from a wounded patient and are compressed to reduce the bit rate of these images. Results indicate that on average 25% compression on images is achieved with 3.5 MOS taken from medical doctors and other paramedical staff the ultimately user of the images

    Multi-regional Adaptive Image Compression (AIC) for hip fractures in pelvis radiography

    Get PDF
    High resolution digital medical images are stored in DICOM (Digital Imaging and Communications in Medicine) format that requires high storage space in database. Therefore reducing the image size while maintaining diagnostic quality can increase the memory usage efficiency in PACS. In this study, diagnostic regions of interest (ROI) of pelvis radiographs marked by the radiologist are segmented and adaptively compressed by using image processing algorithms. There are three ROIs marked by red, blue and green in every image. ROI contoured by red is defined as the most significant region in the image and compressed by lossless JPEG algorithm. Blue and green regions have less importance than the red region but still contain diagnostic data compared to the rest of the image. Therefore, these regions are compressed by lossy JPEG algorithm with higher quality factor than rest of the image. Non-contoured region is compressed by low quality factor which does not have any diagnostic information about the patient. Several compression ratios are used to determine sufficient quality and appropriate compression level. Compression ratio (CR), peak signal to noise ratio (PSNR), bits per pixel (BPP) and signal to noise ratio (SNR) values are calculated for objective evaluation of image quality. Experimental results show that original images can approximately be compressed six times without losing any diagnostic data. In pelvis radiographs marking multiple regions of interest and adaptive compression of more than one ROI is a new approach. It is believed that this method will improve database management efficiency of PACS while preserving diagnostic image content

    LOSSLESS AND LOSSY IMAGE COMPRESSION BASED ON DATA FOLDING

    Get PDF
    Image compression plays a very important role in image processing especially when we have to send the image on the internet. Since imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rates but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in the region of interest, i.e., in diagnostically important regions called region of interest. In the proposed work images are compressed using Data folding technique which uses the property of adjacent neighbour redundancy for prediction. In this method first column folding is applied followed by the row folding iteratively till the image size reduces to predefined value, then arithmetic encoding is applied which results the compressed image at the end before transmitting the data. In this paper lossless compression is achieved only at the region of interest and it is mainly suitable for medical images
    corecore