232,449 research outputs found

    Quality in Ubiquitous Information System Design

    No full text
    International audienceInformation systems become ubiquitous. This opens a large spectrum of the possibilities for the end-users, but the design complexity is increasing. Therefore insuring quality during design is more than ever a challenge. In this article, we study this challenge by identifying the specificities of ubiquitous computing design and by considering the influence of these specificities on the quality of the various aspects of information system design (models, languages, processes and tools). For each aspect, we discuss its requirements on quality and present related works valuable for the definition and the evaluation of ubiquitous information system design quality

    Quality of experience in affective pervasive environments

    Get PDF
    The confluence of miniaturised powerful devices, widespread communication networks and mass remote storage has caused a fundamental shift in the user interaction design paradigm. The distinction between system and user in pervasive environments is evolving into an increasingly integrated loop of interaction, raising a number of opportunities to provide enhanced and personalised experiences. We propose a platform, based on a smart architecture, to address the identified opportunities in pervasive computing. Smart systems aim at acting upon an environment for improving quality of experience: a subjective measure that has been defined as an emotional reaction to products or services. The inclusion of an emotional dimension allows us to measure individual user responses and deliver personalised services with the potential to influence experiences positively. The platform, Cloud2Bubble, leverages pervasive systems to aggregate user and environment data with the goal of addressing personal preferences and supra-functional requirements. This, combined with its societal implications, results in a set of design principles as a concrete fruition of design contractualism. In particular, this thesis describes: - a review of intelligent ubiquitous environments and relevant technologies, including a definition of user experience as a dynamic affective construct; - a specification of main components for personal data aggregation and service personalisation, without compromising privacy, security or usability; - the implementation of a software platform and a methodological procedure for its instantiation; - an evaluation of the developed platform and its benefits for urban mobility and public transport information systems; - a set of design principles for the design of ubiquitous systems, with an impact on individual experience and collective awareness. Cloud2Bubble contributes towards the development of affective intelligent ubiquitous systems with the potential to enhance user experience in pervasive environments. In addition, the platform aims at minimising the risk of user digital exposure while supporting collective action.Open Acces

    Requirements engineering for explainable systems

    Get PDF
    Information systems are ubiquitous in modern life and are powered by evermore complex algorithms that are often difficult to understand. Moreover, since systems are part of almost every aspect of human life, the quality in interaction and communication between humans and machines has become increasingly important. Hence the importance of explainability as an essential element of human-machine communication; it has also become an important quality requirement for modern information systems. However, dealing with quality requirements has never been a trivial task. To develop quality systems, software professionals have to understand how to transform abstract quality goals into real-world information system solutions. Requirements engineering provides a structured approach that aids software professionals in better comprehending, evaluating, and operationalizing quality requirements. Explainability has recently regained prominence and been acknowledged and established as a quality requirement; however, there is currently no requirements engineering recommendations specifically focused on explainable systems. To fill this gap, this thesis investigated explainability as a quality requirement and how it relates to the information systems context, with an emphasis on requirements engineering. To this end, this thesis proposes two theories that delineate the role of explainability and establish guidelines for the requirements engineering process of explainable systems. These theories are modeled and shaped through five artifacts. These theories and artifacts should help software professionals 1) to communicate and achieve a shared understanding of the concept of explainability; 2) to comprehend how explainability affects system quality and what role it plays; 3) in translating abstract quality goals into design and evaluation strategies; and 4) to shape the software development process for the development of explainable systems. The theories and artifacts were built and evaluated through literature studies, workshops, interviews, and a case study. The findings show that the knowledge made available helps practitioners understand the idea of explainability better, facilitating the creation of explainable systems. These results suggest that the proposed theories and artifacts are plausible, practical, and serve as a strong starting point for further extensions and improvements in the search for high-quality explainable systems

    Flexible quality of service model for wireless body area sensor networks

    Get PDF
    Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency (RF) ultra-wideband (UWB) technology has developed substantially for physiological signal monitoring due to its advantages such as low power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this letter, we provide a flexible quality of service (QoS) model for ad-hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad-hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems

    Distinguishing “mHealth” from Other Healthcare Services in a Developing Country: A Study from the Service Quality Perspective

    Get PDF
    Mobile phones’ exponential growth is fuelling the emergence of mobile health (mHealth), thus contributing to healthcare services’ innovative transformation in developing countries. mHealth’s ubiquitous personalised capabilities obviate the access barriers and dismal performance of conventional systems, therefore gaining popularity among patients. Researchers have focused on service quality―a vital element of service adoption―and sustainability. For mHealth to become a robust alternative, how patients perceive mHealth vis-à-vis conventional services must be understood. Comparative analysis studies between mHealth and conventional systems are scarce yet would contribute to theory and strengthen the antecedent phases to service quality, that is, design and operation. mHealth is a viable alternative for fulfiling the unmet goal of quality of life for all. Prompted by these insights, this study is the first attempt to discover the differentiating characteristics of mHealth. Patients’ perceptions were analyzed by multiple discriminant analysis, a classification technique. The findings show that, in distinguishing between healthcare services, mHealth is a favourable alternative: service differentiation occurs along the dimensions of ubiquity, information-quality, and value. The findings’ implications for theory and practice and future research guidelines are also discussed

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Towards self-powered wireless sensor networks

    Get PDF
    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that continuously collect, process, share and transport information. The impact of such technologies in our everyday life is expected to be massive, as it will enable innovative applications that will profoundly change the world around us. Remotely monitoring the conditions of patients and elderly people inside hospitals and at home, preventing catastrophic failures of buildings and critical structures, realizing smart cities with sustainable management of traffic and automatic monitoring of pollution levels, early detecting earthquake and forest fires, monitoring water quality and detecting water leakages, preventing landslides and avalanches are just some examples of life-enhancing applications made possible by smart ubiquitous computing systems. To turn this vision into a reality, however, new raising challenges have to be addressed, overcoming the limits that currently prevent the pervasive deployment of smart devices that are long lasting, trusted, and fully autonomous. In particular, the most critical factor currently limiting the realization of ubiquitous computing is energy provisioning. In fact, embedded devices are typically powered by short-lived batteries that severely affect their lifespan and reliability, often requiring expensive and invasive maintenance. In this PhD thesis, we investigate the use of energy-harvesting techniques to overcome the energy bottleneck problem suffered by embedded devices, particularly focusing on Wireless Sensor Networks (WSNs), which are one of the key enablers of pervasive computing systems. Energy harvesting allows to use energy readily available from the environment (e.g., from solar light, wind, body movements, etc.) to significantly extend the typical lifetime of low-power devices, enabling ubiquitous computing systems that can last virtually forever. However, the design challenges posed both at the hardware and at the software levels by the design of energy-autonomous devices are many. This thesis addresses some of the most challenging problems of this emerging research area, such as devising mechanisms for energy prediction and management, improving the efficiency of the energy scavenging process, developing protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support. %, including the design of mechanisms for energy prediction and management, improving the efficiency of the energy harvesting process, the develop of protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support

    Designing appliances for mobile commerce and retailtainment

    Get PDF
    In the emerging world of the new consumer and the `anytime, anywhere' mobile commerce, appliances are located at the collision point of the retailer and consumer agendas. The consequence of this is twofold: on the one hand appliances that were previously considered plain and utilitarian become entertainment devices and on the other, for the effective design of consumer appliances it becomes paramount to employ multidisciplinary expertise. In this paper, we discuss consumer perceptions of a retailtainment commerce system developed in collaboration between interactivity designers, information systems engineers, hardware and application developers, marketing strategists, product development teams, social scientists and retail professionals. We discuss the approached employed for the design of the consumer experience and its implications for appliance design

    Managing ubiquitous eco cities: the role of urban telecommunication infrastructure networks and convergence technologies

    Get PDF
    A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities
    • …
    corecore