87,614 research outputs found

    Role of solids in heavy metals build-up on urban road surfaces

    Get PDF
    Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load

    High-resolution 3D weld toe stress analysis and ACPD method for weld toe fatigue crack initiation

    Get PDF
    Weld toe fatigue crack initiation is highly dependent on the local weld toe stress-concentrating geometry including any inherent flaws. These flaws are responsible for premature fatigue crack initiation (FCI) and must be minimised to maximise the fatigue life of a welded joint. In this work, a data-rich methodology has been developed to capture the true weld toe geometry and resulting local weld toe stress-field and relate this to the FCI life of a steel arc-welded joint. To obtain FCI lives, interrupted fatigue test was performed on the welded joint monitored by a novel multi-probe array of alternating current potential drop (ACPD) probes across the weld toe. This setup enabled the FCI sites to be located and the FCI life to be determined and gave an indication of early fatigue crack propagation rates. To understand fully the local weld toe stress-field, high-resolution (5 mu m) 3D linear-elastic finite element (FE) models were generated from X-ray micro-computed tomography (mu-CT) of each weld toe after fatigue testing. From these models, approximately 202 stress concentration factors (SCFs) were computed for every 1 mm of weld toe. These two novel methodologies successfully link to provide an assessment of the weld quality and this is correlated with the fatigue performance

    Updated management of malignant biliary tract tumors: an illustrative review

    Get PDF
    The management of malignant biliary tumors (MBTs) is complex and requires a multidisciplinary approach. Guidelines and methods of staging for biliary tumors have recently been released by main international societies, altering the clinical and radiologic approach to this pathologic condition. The aim of the present review is to detail the updated role of imaging in preoperative staging and follow-up and to illustrate clinical/therapeutic pathways. In addition, future perspectives on imaging and targeted/embolization therapies are outlined

    State of the art: iterative CT reconstruction techniques

    Get PDF
    Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging

    Fast tomographic inspection of cylindrical objects

    Get PDF
    This paper presents a method for improved analysis of objects with an axial symmetry using X-ray Computed Tomography (CT). Cylindrical coordinates about an axis fixed to the object form the most natural base to check certain characteristics of objects that contain such symmetry, as often occurs with industrial parts. The sampling grid corresponds with the object, allowing for down-sampling hence reducing the reconstruction time. This is necessary for in-line applications and fast quality inspection. With algebraic reconstruction it permits the use of a pre-computed initial volume perfectly suited to fit a series of scans where same-type objects can have different positions and orientations, as often encountered in an industrial setting. Weighted back-projection can also be included when some regions are more likely subject to change, to improve stability. Building on a Cartesian grid reconstruction code, the feasibility of reusing the existing ray-tracers is checked against other researches in the same field.Comment: 13 pages, 13 figures. submitted to Journal Of Nondestructive Evaluation (https://www.springer.com/journal/10921

    Mineral composition through soil-wine system of portuguese vineyards and its potential for wine traceability

    Get PDF
    The control of geographic origin is one of a highest priority issue regarding traceability and wine authenticity. The current study aimed to examine whether elemental composition can be used for the discrimination of wines according to geographical origin, taking into account the effects of soil, winemaking process, and year of production. The elemental composition of soils, grapes, musts, and wines from three DO (Designations of Origin) and for two vintage years was determined by using the ICP-MS semi-quantitative method, followed by multivariate statistical analysis. The elemental composition of soils varied according to geological formations, and for some elements, the variation due to soil provenance was also observed in musts and wines. Li, Mn, Sr and rare-earth elements (REE) allowed wine discrimination according to vineyard. Results evidenced the influence of winemaking processes and of vintage year on the wine’s elemental composition. The mineral composition pattern is transferred through the soil-wine system, and differences observed for soils are reflected in grape musts and wines, but not for all elements. Results suggest that winemaking processes and vintage year should be taken into account for the use of elemental composition as a tool for wine traceability. Therefore, understanding the evolution of mineral pattern composition from soil to wine, and how it is influenced by the climatic year, is indispensable for traceability purposesinfo:eu-repo/semantics/publishedVersio

    Inconsistency in 9 mm bullets : correlation of jacket thickness to post-impact geometry measured with non-destructive X-ray computed tomography

    Get PDF
    Fundamental to any ballistic armour standard is the reference projectile to be defeated. Typically, for certification purposes, a consistent and symmetrical bullet geometry is assumed, however variations in bullet jacket dimensions can have far reaching consequences. Traditionally, characteristics and internal dimensions have been analysed by physically sectioning bullets – an approach which is of restricted scope and which precludes subsequent ballistic assessment. The use of a non-destructive X-ray computed tomography (CT) method has been demonstrated and validated Kumar et al., 2011); the authors now apply this technique to correlate bullet impact response with jacket thickness variations. A set of 20 bullets (9 mm DM11) were selected for comparison and an image-based analysis method was employed to map jacket thickness and determine the centre of gravity of each specimen. Both intra- and inter-bullet variations were investigated, with thickness variations of the order of 200 um commonly found along the length of all bullets and angular variations of up to 50 um in some. The bullets were subsequently impacted against a rigid flat plate under controlled conditions (observed on a high-speed video camera) and the resulting deformed projectiles were re-analysed. The results of the experiments demonstrate a marked difference in ballistic performance between bullets from different manufacturers and an asymmetric thinning of the jacket is observed in regions of pre-impact weakness. The conclusions are relevant for future soft armour standards and provide important quantitative data for numerical model correlation and development. The implications of the findings of the work on the reliability and repeatability of the industry standard V50 ballistic test are also discussed

    Utilizing micro-computed tomography to evaluate bone structure surrounding dental implants: a comparison with histomorphometry

    Get PDF
    Although histology has proven to be a reliable method to evaluate the ossoeintegration of a dental implant, it is costly, time consuming, destructive, and limited to one or few sections. Microcomputed tomography (µCT) is fast and delivers three-dimensional information, but this technique has not been widely used and validated for histomorphometric parameters yet. This study compared µCT and histomorphometry by means of evaluating their accuracy in determining the bone response to two different implant materials. In total, 32 titanium (Ti) and 16 hydroxyapatite (HA) implants were installed in 16 lop-eared rabbits. After 2 and 4 weeks, the animals were scarified, and the samples retrieved. After embedding, the samples were scanned with µCT and analyzed three-dimensionally for bone area (BA) and bone-implant contact (BIC). Thereafter, all samples were sectioned and stained for histomorphometry. For the Ti implants, the mean BIC was 25.25 and 28.86% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 24.11 and 24.53% when measured with µCT. BA was 35.4 and 31.97% after 2 and 4 weeks for histomorphometry and 29.06 and 27.65% for µCT. For the HA implants, the mean BIC was 28.49 and 42.51% after 2 and 4 weeks, respectively, when measured by histomorphometry, while it was 33.74 and 42.19% when measured with µCT. BA was 30.59 and 47.17% after 2 and 4 weeks for histomorphometry and 37.16 and 44.95% for µCT. Direct comparison showed that only the 2 weeks BA for the titanium implants was significantly different between µCT and histology (p = 0.008). Although the technique has its limitations, µCT corresponded well with histomorphometry and should be considered as a tool to evaluate bone structure around implants
    • …
    corecore