17,085 research outputs found

    Image quality assessment for fake biometric detection: Application to Iris, fingerprint, and face recognition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.To ensure the actual presence of a real legitimate trait in contrast to a fake self-manufactured synthetic or reconstructed sample is a significant problem in biometric authentication, which requires the development of new and efficient protection measures. In this paper, we present a novel software-based fake detection method that can be used in multiple biometric systems to detect different types of fraudulent access attempts. The objective of the proposed system is to enhance the security of biometric recognition frameworks, by adding liveness assessment in a fast, user-friendly, and non-intrusive manner, through the use of image quality assessment. The proposed approach presents a very low degree of complexity, which makes it suitable for real-time applications, using 25 general image quality features extracted from one image (i.e., the same acquired for authentication purposes) to distinguish between legitimate and impostor samples. The experimental results, obtained on publicly available data sets of fingerprint, iris, and 2D face, show that the proposed method is highly competitive compared with other state-of-the-art approaches and that the analysis of the general image quality of real biometric samples reveals highly valuable information that may be very efficiently used to discriminate them from fake traits.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Shield (TEC2012-34881) from Spanish MECD, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónic

    Evaluation and Understandability of Face Image Quality Assessment

    Get PDF
    Face image quality assessment (FIQA) has been an area of interest to researchers as a way to improve the face recognition accuracy. By filtering out the low quality images we can reduce various difficulties faced in unconstrained face recognition, such as, failure in face or facial landmark detection or low presence of useful facial information. In last decade or so, researchers have proposed different methods to assess the face image quality, spanning from fusion of quality measures to using learning based methods. Different approaches have their own strength and weaknesses. But, it is hard to perform a comparative assessment of these methods without a database containing wide variety of face quality, a suitable training protocol that can efficiently utilize this large-scale dataset. In this thesis we focus on developing an evaluation platfrom using a large scale face database containing wide ranging face image quality and try to deconstruct the reason behind the predicted scores of learning based face image quality assessment methods. Contributions of this thesis is two-fold. Firstly, (i) a carefully crafted large scale database dedicated entirely to face image quality assessment has been proposed; (ii) a learning to rank based large-scale training protocol is devel- oped. Finally, (iii) a comprehensive study of 15 face image quality assessment methods using 12 different feature types, and relative ranking based label generation schemes, is performed. Evalua- tion results show various insights about the assessment methods which indicate the significance of the proposed database and the training protocol. Secondly, we have seen that in last few years, researchers have tried various learning based approaches to assess the face image quality. Most of these methods offer either a quality bin or a score summary as a measure of the biometric quality of the face image. But, to the best of our knowledge, so far there has not been any investigation on what are the explainable reasons behind the predicted scores. In this thesis, we propose a method to provide a clear and concise understanding of the predicted quality score of a learning based face image quality assessment. It is believed that this approach can be integrated into the FBI’s understandable template and can help in improving the image acquisition process by providing information on what quality factors need to be addressed

    FaceQnet: Quality Assessment for Face Recognition based on Deep Learning

    Full text link
    In this paper we develop a Quality Assessment approach for face recognition based on deep learning. The method consists of a Convolutional Neural Network, FaceQnet, that is used to predict the suitability of a specific input image for face recognition purposes. The training of FaceQnet is done using the VGGFace2 database. We employ the BioLab-ICAO framework for labeling the VGGFace2 images with quality information related to their ICAO compliance level. The groundtruth quality labels are obtained using FaceNet to generate comparison scores. We employ the groundtruth data to fine-tune a ResNet-based CNN, making it capable of returning a numerical quality measure for each input image. Finally, we verify if the FaceQnet scores are suitable to predict the expected performance when employing a specific image for face recognition with a COTS face recognition system. Several conclusions can be drawn from this work, most notably: 1) we managed to employ an existing ICAO compliance framework and a pretrained CNN to automatically label data with quality information, 2) we trained FaceQnet for quality estimation by fine-tuning a pre-trained face recognition network (ResNet-50), and 3) we have shown that the predictions from FaceQnet are highly correlated with the face recognition accuracy of a state-of-the-art commercial system not used during development. FaceQnet is publicly available in GitHub.Comment: Preprint version of a paper accepted at ICB 201

    Design and implementation of a multi-modal biometric system for company access control

    Get PDF
    This paper is about the design, implementation, and deployment of a multi-modal biometric system to grant access to a company structure and to internal zones in the company itself. Face and iris have been chosen as biometric traits. Face is feasible for non-intrusive checking with a minimum cooperation from the subject, while iris supports very accurate recognition procedure at a higher grade of invasivity. The recognition of the face trait is based on the Local Binary Patterns histograms, and the Daughman\u2019s method is implemented for the analysis of the iris data. The recognition process may require either the acquisition of the user\u2019s face only or the serial acquisition of both the user\u2019s face and iris, depending on the confidence level of the decision with respect to the set of security levels and requirements, stated in a formal way in the Service Level Agreement at a negotiation phase. The quality of the decision depends on the setting of proper different thresholds in the decision modules for the two biometric traits. Any time the quality of the decision is not good enough, the system activates proper rules, which ask for new acquisitions (and decisions), possibly with different threshold values, resulting in a system not with a fixed and predefined behaviour, but one which complies with the actual acquisition context. Rules are formalized as deduction rules and grouped together to represent \u201cresponse behaviors\u201d according to the previous analysis. Therefore, there are different possible working flows, since the actual response of the recognition process depends on the output of the decision making modules that compose the system. Finally, the deployment phase is described, together with the results from the testing, based on the AT&T Face Database and the UBIRIS database
    • …
    corecore