2,213 research outputs found

    Discovery of selective saccharide receptors via Dynamic Combinatorial Chemistry

    Get PDF
    The diagnosis of various diseases and pathological conditions can be accomplished by screening and detecting glycans in cells. Certain glycans serve as excellent biomarkers, being related to cell malfunctioning, while other structurally similar glycans perform completely different functions and are naturally present in healthy cells. Despite the theoretical feasibility of using glycans as biomarkers for early disease detection, our current inability to discriminate between them limits their use. One promising approach to distinguishing between glycans is targeting their dissimilarities in saccharide chains. However, designing selective receptors for saccharides is challenging due to the complexity of these molecules. Their vast diversity, the fact that they exist in many interconvertible forms, their lack of recognisable functional groups, or the fact that they are normally heavily solvated in aqueous environments have made the design of receptors for saccharides a challenge that has kept the scientific community busy for the last 35 years. Although there have been ground-breaking discoveries in the field, improvements are needed to enhance our disease detection and risk stratification tools. To address this challenge, we employed a technique known as Dynamic Combinatorial Chemistry (DCC). DCC enables the self-formation and self-selection of the best possible receptor for a given target from a pool or library of potentially good ligands. DCC has been effective for creating receptors for biomolecules such as DNA, RNA, and proteins, but its use for discovering sugar receptors is less explored. In this work, we filled this gap by implementing DCC for screening common saccharides (glucose, galactose, mannose, and fructose) using small, simple, and inexpensive building blocks. Our results indicated that molecule 2DD, which consists of a benzene ring with 2 units of amino acid aspartic acid derivatives connected in positions 1 and 3, is the best receptor in a library of very similar structures for the saccharides glucose, galactose, and mannose. For fructose, molecule 1P, a benzene ring linked to just one unit of the amino acid phenylaldehyde, was appointed as the best receptor. The differential behaviour of fructose can provide insight into the relatively unknown processes behind molecular recognition of sugars. Molecules 2DD and 1P, as well as some other library members as negative controls, were then synthesised for further testing and DCC results were then validated by Isothermal Titration Calorimetry (ITC) and NMR techniques, proving the effectiveness of DCC as a molecular recognition tool for the creation of receptors for saccharides. Moreover, molecule 1P was found to have a high binding constant (Ka_{a} = 1762 M1^{-1}) and selectivity (50-100 times over other sugars) for fructose, which is surprisingly good considering the simplicity of the receptor. A much more challenging approach was attempted by employing short peptides as scaffolds in DCC experiments. The benefits of using peptides are numerous but can be summarised in three bullet points: customisability, flexibility, and easiness in their synthesis. Unfortunately, we encountered many difficulties for the complete functionalisation of the peptides within the Dynamic Combinatorial Library (DCL) and this approach did not yield the desired results before the research project came to an end. However, we believe in its potential and the knowledge that we gained on the topic helped to stablish the foundations on which new research will be carried out in the near future within the research group. In summary, this thesis reports the development of a rapid methodology for the discovery of selective receptors for monosaccharides, employing a library of simple and inexpensive starting building blocks. While this was a proof-of-concept study, it can be scalable to larger library sizes and to target more complex biomolecules, becoming a useful tool that could accelerate the discovery of new molecules with biomedical applications

    A Broadband Mid-infrared Metasurface for Polarisation Manipulation and Utilisation

    Get PDF
    A pair of enantiomers are distinct from each other due to chiral structural arrangement which leads to selective interaction with chiral light. Vibrational circular dichroism spectroscopy in mid-infrared region provide a powerful label-free method to distinguish chiral enantiomers. Besides, mid-infrared sensing also significantly benefit from resolving compositional information of molecules due to molecular vibrational fingerprints which holds promising application in biological and medical sensing. However, the low signal-to-noise ratio associated with weak light-matter interaction is a continuing obstacle hindering the practical application. Recent demonstrations of chiral metamaterials have shown that due to the chirality of structure, local superchiral field can be produced in the vicinity of structure to interact with molecules and enhance vibrational circular dichroism response. However, a limitation factor in development of chiral structure is the narrow effective working bandwidth and the requirement of circular polarization excitation. This thesis introduces an achiral nanorod-based metausrface that enable to overcome these limitations. First, the nanorod-based metasurface is present to achieve high efficient linear-to-circular polarization conversion in a broadband mid-infrared wavelength range in reflection mode. The model was firstly studied and optimised through simulation tool based on Finite Difference Time Domain method. The device was fabricated in a top-down approach based on electron beam lithography and characterised using Fourier transform infrared spectroscopy. We identified two distinct resonances originated from gap-plasmon mode at 3.4μm and Fabry-Perot mode at 7.9μm. The demonstration of polarization state based on the measured Stokes parameters within off-resonance range from 4-7μm show that the reflected beam has converted into circular polarization state. For practical application of vibrational circular dichroism spectroscopy, we numerically demonstrate the induced chirality in near-field under excitation of linear polarization with various polarization angles. These analysis suggest that superchiral field can be produced by nanorod-based metasurface and distributed spatially under linear polarization excitation. When polarization is parallel or orthogonal to rod, namely the symmetry exist in the combination of rod and incident polarization, the absolute chirality is zero due to the fact that same amount of optical chirality density with opposite handedness offset by each other. However it is showed that one handedness of the optical chirality density is dominant when the symmetry is broken, hence, holds potential for circular dichroism spectroscopy sensing. In an experimental feasibility study, we measured the polarization states of light in far-field and demonstrate that the absolute chirality in the far-field show similar behaviour as that in near-field. Finally, we conduct a molecular sensing measurement based on the rod-shape metausrface for enantiomers (alanine) identification through circular dichroism spectroscopy. This thesis demonstrates with FDTD simulations that the metasurface can generate superchiral fields which enable to enhance interaction with molecules upon linear polarization excitation. By simply rotating sample with 90 degree, molecules can then interact with superchiral field with opposite handedness. The circular dichroism is to record the intensity of reflected beam and characterise the differential intensity between the two. Despite the measured data do not show inverse pattern for L- and D-alanine, we confirmed that metausrface enable to enhance the light-matter interaction

    Synthesis and Characterization of Nanoporous Resin Particles for Water Purification

    Get PDF
    Through progressive industrialization and the relentless consumption of natural raw materials, man is exerting a negative influence on his habitat. In particular, water as the basis of life and almost all processes of our economy is contaminated by various pollutants due to excessive use and insufficient purification. Here, oxyanions, heavy metal ions and organic pollutants pose a high risk to aquatic habitats and ultimately to humans. Due to insufficient removal, they also contribute to the loss of non-renewable raw materials for industrial cycles. Due to a mostly low effect concentration and potential interactions with diverse living organisms, the removal of many contaminants is extremely important to avoid further altering existing ecosystems. Adsorption represents an energy-efficient method of removal using adsorbents suitable for this purpose. Highly cross-linked resin polymers such as poly(melamine-co-formaldehyde) (PMF) with its excellent chemical resistance, high number of functional groups and ease of preparation, represent promising starting points for adsorbents. This dissertation describes the colloidal aqueous synthesis of nanoporous resin particles (e.g. PMF) by templating with SiO2 nanoparticles (SiO2 NPs), which are subsequently used to adsorb water pollutants. An overall goal of this work consists of elucidating the mechanism for particle and pore formation by systematically varying various synthesis parameters. Electron microscopy, N2-soprtion and particle size measurement are used to analyze the morphology, size and pore structure of the particles. Comprehensive investigations thus allow to determine the influence of each tested synthesis parameter on these properties. A very important goal, especially for future large-scale applicability, is the colloidal production of uniform particles, which have both a high ordered porosity and particle diameters in the range of a few micrometers. This enables an application as a fixed-bed adsorber that can be flowed through. This goal is closely linked to the mechanistic elucidation of pore and particle formation in the synthesis. The prepared nanoporous PMF particles were tested for various adsorption applications after their characterization. In order to obtain a comprehensive picture of the applicability of PMF particles, experiments with oxyanions, with pharmaceuticals as representatives of organic pollutants and with heavy metal ions will be carried out respectively. On the one hand, these experiments will focus on investigating the adsorption performance and mechanism of PMF with the respective pollutant. On the other hand, the influence of the changed porosity on the adsorption mechanism is investigated by using different particles of a varied synthesis parameter. Sulfate and phosphate ions were investigated in the oxyanion class. Extremely high separation rates were demonstrated for both ions, significantly outperforming previous commercially available materials. In experiments concerning a potential selective adsorption and thus separation of both species, the PMF/SiO2 hybrid particles, in which the template had not yet been removed, showed a selective sulfate adsorption. The immobilization of heavy metal ions was analyzed with special focus on the simultaneous separation of the Cu2+ ions and respective anions used here. Investigations of the adsorbent after the adsorption experiments by means of electron microscopy, X-ray scattering and electron spin resonance spectroscopy elucidated the adsorption mechanism, which had been insufficiently analyzed so far. Here, adsorption and surface-induced precipitation were identified as partially separate subprocesses, both of which are responsible for the separation of both metal and anions from solution. In adsorption experiments with the monovalent ions nitrate and chloride, a two-step uptake process was identified, which was mathematically described for the first time via a new adsorption isotherm. In the scope of organic water pollutants, the separation of the pharmaceutical diclofenac is being tested. In particular, the adsorption of pharmaceuticals is an urgent issue due to their low effect concentration and ubiquity in surface and tap waters. Pharmaceutical separation using PMF has hardly been investigated worldwide despite its promising properties. In these experiments, particles templated with SiO2 NPs of different sizes and stabilized in different ways were tested. This resulted in pore systems that varied from each other especially in their accessibility of the pore system and in the diameter of the connecting channels between the main cavities. These characteristics significantly affected the adsorption capacity and separation rates in low concentration range. A final goal is to synthesize a resin network that uses an equally highly functional triazine-based monomer instead of melamine. The monomer 2,4,6-tris(2,4,6-trihydroxyphenyl)-1,3,5-triazine (3PT) possesses nine hydroxyl groups each, whereby a polymer based on it should exhibit strongly modified adsorption properties compared to PMF. This monomer was used in an aqueous polymerization analogous to PMF to produce a previously unknown polymer network, which was designated P(3PT-F). Here, templating was omitted because the newly prepared material already exhibited intrinsic nanoporosity due to the size of the 3PT monomer. In subsequent adsorption experiments, very high separation rates were demonstrated for the toxic metal ions Pb2+, Cd2+ and Ni2+. In realistic initial concentrations, the contamination was reduced to drinking water quality in each case. P(3PT-F) also showed highly selective removal of Pb2+ over the common ions Ca2+, Mg2+, K+ and Fe2+. As fundamental evidence, reusability was also demonstrated by complete desorption with dilute HCl and subsequent re-adsorption without significant reduction in capacity. Overall, starting from the fundamental study of PMF particle synthesis, a more general understanding of aqueous dispersion polymerization of hydrophobic resins was first derived and templating with hydrophilic SiO2 NPs was implemented. With the help of understanding the particle growth processes and interactions responsible for templating, the properties of the resulting particles could be controlled. Subsequently, the influence of the changed porosity in particular on the separation performance could be investigated in the adsorption studies. In addition, it was possible to analyze which interactions PMF enters into with the respective pollutant types. By replacing the monomer melamine with a hydroxyl-containing monomer, a novel resin polymer could be produced. With its altered porosity and reactivity, this can now serve as a new starting point for adsorption experiments with strongly altered adsorption performance, e.g. towards heavy metal ions.:Abstract 1 Kurzfassung 5 List of Publications 9 First-Author Publications 9 Co-Author Publications 10 Patent 12 Conference Proceedings 12 Oral Presentations 12 Poster 12 List of Figures 13 Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 14 Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 15 Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 16 SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 18 Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 19 List of Tables 21 Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 21 Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 21 Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 22 SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 22 Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 23 Abbreviations 25 Symbols 26 1. Introduction 1 2. Objectives and Experimental Design 5 3. Scientific Background 11 3.1. Poly(melamine-co-formaldehyde) 11 3.1.1. Polymerization Mechanism 11 3.1.2. Synthesis Strategies for the Preparation of Porous PMF Particles. 13 3.1.3. Fields of Application of PMF 13 3.2. Adsorption 15 3.2.1. Adsorption Isotherms and Mathematical Modeling 16 3.3. Surface Precipitation 20 4. Fundamentals of Instrumental Analytics 23 4.1. Gas Sorption Measurements 23 4.1.1. Determination of Pore Sizes 26 4.1.2. Determination of Specific Surface Area 27 4.2. Transmission Electron Microscopy 29 4.3. Inductively Coupled Plasma Optical Emission Spectroscopy 31 Results and Discussion 33 Chapter Overview 33 5. Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal 37 Graphical Abstract 37 Abstract 37 1. Introduction 38 2. Results and Discussion 39 2.1. Synthesis and Characterization of the PMF Particles 40 2.2. Sorption Experiments 47 3. Materials and Methods 54 3.1. Materials 54 3.2. Methods 54 3.3. Synthesis of the PMF Particles 56 3.4. Water Treatment Experiments 57 4. Conclusions 59 6. Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal 65 Graphical Abstract 65 Abstract 65 1. Introduction 66 2. Materials 68 3. Methods 68 3.1. Synthesis of the PMF particles 70 3.2. Water treatment experiments with diclofenac solution 72 3.3. Theoretical model 72 3. Results and Discussion 73 3.1. Synthesis and characterization of the PMF particles 74 3.2. Adsorption of Pharmaceutics 80 4. Conclusion 84 7. Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles 89 Graphical Abstract 89 Abstract 89 1. Introduction 90 2. Materials and methods 91 2.1. Materials 91 2.2. Synthesis of the Poly(melamine-co-formaldehyde) particles 92 2.3. Methods 93 2.4. Water treatment experiments 96 3. Results and discussion 97 3.1. Synthesis and characterization of the PMF particles 98 3.2. Cu2+ uptake experiments 102 3.3. Mechanism for Cu2+ and Anion Removal 115 3.4. Investigation of other heavy metal salts 116 4. Conclusions 117 8. SiO₂ Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles 121 Graphical Abstract 121 Abstract 121 1. Introduction 122 2. Materials and methods 123 2.1. Materials 123 2.2. Methods 124 2.3. Synthesis of the PMF particles 125 2.4. Water treatment experiments 128 2.5. Theoretical model 129 3. Results and Discussion 132 3.1. PMF-Std 133 3.2. Influence of the reaction mixture composition 136 3.3. Variation of the process parameters 140 3.4. Conclusion on the templating mechanism for PMF-Std 146 3.5. Acquiring µm-sized porous PMF particles for adsorption application 149 3.6. Adsorption experiments with K2Cr2O7 solution 151 4. Conclusion 155 9. Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions 161 Graphical Abstract 161 Abstract 161 1. Introduction 162 2. Materials and methods 163 2.1. Materials 163 2.2. Synthesis 164 2.3. Characterization 166 2.4. Batch adsorption experiments 169 2.5. Calculation and theoretical models 170 3. Results and discussion 172 3.1. Synthesis and characterization of the polymer particles 172 3.2. Adsorption experiments with Ni2+, Cd2+, and Pb2+ onto P(3PT-F)-3L 178 4. Conclusions 184 10. Conclusion and Outlook 191 Contribution to Publications 197 Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal 197 Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal 198 Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles 199 SiO₂ Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles 200 Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions 201 Danksagung 203 Appendix 205 References 207 Eidesstattliche Versicherung 217Durch fortschreitende Industrialisierung und den schonungslosen Verbrauch natürlicher Rohstoffe übt der Mensch negativen Einfluss auf seinen Lebensraum aus. Insbesondere Wasser als Grundlage des Lebens und fast aller Prozesse unserer Wirtschaft wird durch eine übermäßige Nutzung und unzureichende Reinigung mit diversen Schadstoffen kontaminiert. Hierbei stellen Oxyanionen, Schwermetallionen und organische Schadstoffe ein hohes Risiko für aquatische Lebensräume und letztendlich auch den Menschen dar. Durch unzureichende Entfernung tragen sie außerdem zum Verlust nicht-erneuerbarer Rohstoffe für industrielle Kreisläufe bei. Durch eine meist geringe Effektkonzentration und potentielle Wechselwirkungen mit diversen Lebewesen ist die Entfernung vieler Verunreinigungen extrem wichtig, um bestehende Ökosysteme nicht weiter zu verändern. Adsorption stellt eine energieeffiziente Methode zur Entfernung dieser Schadstoffe durch hierfür geeignete Adsorbentien dar. Hochgradig vernetzte Harzpolymere wie Poly(melamin-co-formaldehyd) (PMF) stellen mit ihrer sehr hohen chemischen Beständigkeit, einer hohen Zahl funktioneller Gruppen und einfachen Herstellbarkeit einen vielversprechenden Ausgangspunkt für Adsorbentien dar. Diese Dissertation beschreibt die kolloidale, wässrige Synthese nanoporöser Harzpartikel (z. B. PMF) durch eine Templatierung mit SiO2 Nanopartikeln (SiO2 NPs), welche anschließend zur Adsorption von Wasserschadstoffen eingesetzt werden. Ein übergeordnetes Ziel dieser Arbeit besteht aus der Aufklärung des Mechanismus zur Partikel- und Porenbildung durch systematische Variation verschiedener Syntheseparameter. Mittels Elektronenmikroskopie, N2-Sorption und Partikelgrößenmessung wird die Morphologie, Größe und Porenstruktur der Partikel analysiert. Umfassende Untersuchungen ermöglichen somit, den Einfluss der einzelnen getesteten Syntheseparameter auf diese Eigenschaften zu bestimmen. Ein sehr wichtiges Ziel, besonders für eine zukünftige großtechnische Anwendbarkeit, ist dabei die kolloidale Herstellung uniformer Partikel, welche sowohl eine hohe geordnete Porosität als auch Partikeldurchmesser im Bereich einiger Mikrometer aufweisen. Dies ermöglicht einen Einsatz als durchströmbaren Festbett-Adsorber. Dieses Ziel ist eng mit der mechanistischen Aufklärung der Poren- und Partikelbildung in der Synthese verknüpft. Die hergestellten nanoporösen PMF-Partikel wurden nach ihrer Charakterisierung für verschiedene Adsorptionsanwendungen getestet. Um ein umfassendes Bild über die Einsetzbarkeit von PMF-Partikeln zu erhalten, sollen jeweils Versuche mit Oxyanionen, mit Schwermetallionen und mit Pharmazeutika als Vertreter organischer Schadstoffe durchgeführt werden. Bei diesen Versuchen steht zum einen die Untersuchung der Adsorptionsleistung und des Adsorptionsmechanismus des jeweiligen Schadstoffes an PMF im Vordergrund. Zum anderen wird durch die Verwendung verschiedener Partikel, bei welchen ein einzelner Syntheseparameter variiert wurde, der Einfluss der veränderten Porosität auf den Adsorptionsmechanismus untersucht. Sulfat- und Phosphationen wurden in der Klasse der Oxyanionen untersucht. Für beide Ionen wurden extrem hohe Abtrennraten nachgewiesen, welche bisherige kommerziell erhältliche Materialien signifikant übertraf. In Versuchen hinsichtlich einer potentiellen selektiven Adsorption und somit Trennung beider Spezies, zeigten die PMF/SiO2-Hybridpartikel, bei welchen das Templat noch nicht entfernt wurde, eine selektive Sulfatadsorption. Die Immobilisierung von Schwermetallionen wurde mit besonderem Fokus auf die gleichzeitig auftretende Abtrennung der dafür verwendeten Cu2+-Ionen und jeweiliger Anionen analysiert. Durch Untersuchungen des Adsorbens nach den Adsorptionsversuchen mittels Elektronenmikroskopie, Röntgenstreuung und Elektronenspinresonanz-Spektroskopie wurde der bisher unzureichend analysierte Adsorptionsmechanismus aufgeklärt. Hierbei wurden Adsorption und oberflächeninduzierte Fällung als separate Teilprozesse identifiziert, welche beide jeweils für die Abscheidung von sowohl Metall- als auch Anionen aus der Lösung verantwortlich sind. Bei Adsorptionsversuchen mit den einwertigen Ionen Nitrat und Chlorid wurde ein zweistufiger Prozess identifiziert, welcher erstmals über eine neue Adsorptionsisotherme mathematisch beschrieben wurde. Im Bereich organischer Wasserschadstoffe wird die Abtrennung des Pharmazeutikums Diclofenac getestet. Insbesondere die Adsorption von Pharmazeutika stellt aufgrund von deren geringen Effektkonzentration und Allgegenwärtigkeit in Oberflächen- und Leitungswässern ein dringliches Thema dar. Die Pharmazeutika-Abtrennung mittels PMF wurde trotz seiner vielversprechenden Eigenschaften weltweit bisher kaum untersucht. Im Rahmen dieser Versuche wurden Partikel getestet, welche mit unterschiedlich großen und unterschiedlich stabilisierten SiO2 NPs templatiert wurden. Dadurch entstanden Porensysteme, die besonders in derer Zugänglichkeit ihres Porensystems und in dem Durchmesser der Verbindungskanäle zwischen den Hauptkavitäten voneinander variierten. Diese Eigenschaften wirkten sich signifikant auf die Adsorptionskapazität und die Abtrennraten im niedrigen Konzentrationsbereich aus. Ein abschließendes Ziel ist die Synthese eines Harznetzwerkes, welches statt Melamin auf einem ebenso hochfunktionellen, triazinbasierten Monomer basiert. Das Monomer 2,4,6-Tris(2,4,6-trihydroxyphenyl)-1,3,5-triazin (3PT) besitzt jeweils neun Hydroxylgruppen, wodurch ein darauf basierendes Polymer stark veränderte Adsorptionseigenschaften gegenüber PMF aufweisen soll. Mit diesem Monomer wurde in einer analog zu PMF durchgeführten wässrigen Polymerisation ein bisher unbekanntes Polymernetzwerk hergestellt, welches als P(3PT-F) bezeichnet wurde. Hierbei wurde auf Templatierung verzichtet, da das neu hergestellte Material bereits intrinsische Nanoporosität durch die Größe des verwendeten 3PT-Monomers aufwies. In anschließenden Adsorptionsversuchen wurden sehr hohe Abtrennraten für die toxischen Metallion Pb2+, Cd2+ und Ni2+ nachgewiesen. In realistischen Ausgangskonzentrationen wurde die Kontamination mit diesen Ionen jeweils auf Trinkwasserqualität reduziert. P(3PT-F) zeigte außerdem eine sehr selektive Abtrennung von Pb2+ gegenüber den häufig vorkommenden Ionen Ca2+, Mg2+, K+ und Fe2+. Als grundlegender Beweis konnte eine Wiederverwendbarkeit durch die vollständige Desorption mit verdünnter HCl gezeigt werden und eine anschließende erneute Adsorption ohne signifikante Verringerung der Kapazität. Insgesamt wurde ausgehend von der grundlegenden Untersuchung der PMF-Partikelsynthese erst ein generelleres Verständnis der wässrigen Dispersionspolymerisation hydrophober Harze abgeleitet und die Templatierung mit hydrophilen SiO2 NPs implementiert. Mithilfe des Verständnisses der Partikelwachstumsprozesse und der Wechselwirkungen, welche für die Templatierung verantwortlich sind, konnten die Eigenschaften der entstehenden Partikel gesteuert werden. Im Rahmen der Adsorptionsuntersuchungen konnte anschließend der Einfluss insbesondere der veränderten Porosität auf die Abtrennleistung untersucht werden. Außerdem konnte analysiert werden, welche Wechselwirkungen PMF mit den jeweiligen Schadstoffarten eingeht. Durch den Austausch des Monomers Melamin gegen das hydroxylhaltiges Monomer 3PT konnte ein neuartiges Harzpolymer hergestellt werden. Dieses kann mit seiner veränderten Porosität und Reaktivität nun als neuer Ausgangspunkt für Adsorptionsexperimente mit stark veränderter Adsorptionsleistung z. B. gegenüber Schwermetallionen dienen.:Abstract 1 Kurzfassung 5 List of Publications 9 First-Author Publications 9 Co-Author Publications 10 Patent 12 Conference Proceedings 12 Oral Presentations 12 Poster 12 List of Figures 13 Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 14 Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 15 Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 16 SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 18 Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 19 List of Tables 21 Mesoporous Poly(Melamine-co-Formaldehyde) Particles for Efficient and Selective Phosphate and Sulfate Removal: 21 Tuning the Pore Structure of Templated Mesoporous Poly(melamine-co-formaldehyde) Particles toward Diclofenac Removal: 21 Adsorption vs. Surface Precipitation of Cu²+ onto Porous Poly(melamine-co-formaldehyde) Particles: 22 SiO2 Nanospheres as Surfactant and Template in Aqueous Dispersion Polymerizations Yielding Nanoporous Resin Particles: 22 Waterborne Phenolic, Triazine-Based Porous Polymer Particles for the Removal of Nickel, Cadmium, and Lead Ions: 23 Abbreviations 25 Symbols 26 1. Introduction 1 2. Objectives and Experimental Design 5 3. Scientific Background 11 3.1. Poly(melamine-co-formaldehyde) 11 3.1.1. Polymerization Mechanism 11 3.1.2. Synthesis Strategies for the Preparation of Porous PMF Particles. 13 3.1.3. Fields of Application of PMF 13 3.2. Adsorption 15 3.2.1. Adsorption Isotherms and Mathematical Modeling 16 3.3. Surface Precipitation 20 4. Fundamentals of Instrumental Analytics 23 4.1. Gas Sorption Measurements 23 4.1.1. Determination of

    A convergent growth approach to electroactive ferrocene rich carbosilane- and siloxane-based dendrons, dendrimers, and dendronized polymers

    Full text link
    The construction of the first members of a novel family of structurally well-defined, ferrocenyl rich, dendritic macromolecules based on carbosilane skeletons and siloxane linkages has been achieved via a convergent growth approach. Starting from triferrocenylvinylsilane Fc3SiCHvCH2 (1) (Fc = Fe(η5 -C5H4)(η5 - C5H5) as the key monomer, the sequential utilization of platinum-catalyzed hydrosilylation and alkenylation steps with Grignard reagents (allylmagnesium bromide) can be applied to prepare three different branched structures: multiferrocenyl-terminated dendrons 2 and 3, dendrimers 4 and 5, and dendronized polymers 7n–9n. All of the dendritic metallomacromolecules have been thoroughly characterized using a combination of elemental analysis, multinuclear (1 H, 13C, 29Si) NMR spectroscopy, FT-IR and MALDI-TOF mass spectrometry, to establish their chemical structures and properties. The molecular structures of G1- dendron 3 and dendrimer 4, containing six and nine ferrocenyl units, respectively, have been successfully determined by single-crystal X-ray analysis, compound 4 being the branched multiferrocenyl-containing siloxane with the highest number of Fc substituents whose structure has been reported so far. Electrochemical studies (using cyclic voltammetry (CV) and square wave voltammetry (SWV) performed in dichloromethane solution with [PF6] − and [B(C6F5)]4− as supporting electrolyte anions of different coordinating abilities) reveal that all the macromolecular compounds obtained exhibit a three-wave redox pattern, suggesting appreciable electronic interactions between the silicon-bridged triferrocenyl moieties as they are successively oxidized. In addition, dendrimer 5 and dendronized polymers 7n–9n, with 12 and 4 < n < 14 ferrocenyl units, respectively, linked in threes around the periphery, undergo remarkable oxidative precipitation in CH2Cl2/[n-Bu4N][PF6] and are able to form chemically modified electrodes with stable electroactive filmsWe thank the Ministerio de Ciencia e Innovación (MICINN) of Spain for its financial support through projects PGC2018- 094644-B-C21 and PID2021-125207NB-C3

    Understanding Gas and Energy Storage in Geological Formations with Molecular Simulations

    Get PDF
    Methane (CH4), the cleanest burning fossil fuel, has the potential to solve the energy crisis owing to the growing population and geopolitical tensions. Whilst highly calorific, realising its potential requires efficient storage solutions, which are safe and less energy-intensive during production and transportation. On the other hand, carbon dioxide (CO2), the by-product of human activities, exacerbates global heating driving climate change. CH4 is abundant in natural systems, in the form of gas hydrate and trapped gas within geological formations. The primary aim of this project was to learn how Nature could store such a large quantity of CH4 and how we can potentially extract and replace the in-place CH4 with atmospheric CO2, thereby reducing greenhouse gas emissions. We studied this question by applying molecular dynamics (MD) and Monte Carlo (MC) simulation techniques. Such techniques allow us to understand the behaviour of confined fluids, i.e., within the micropores of silica and kerogen matrices. Our simulations showed that CH4 hydrate in confinement could form under milder conditions than required, deviating from the typical methane-water phase diagram, complementing experimental observations. This research can contribute to artificial gas hydrate production via porous materials for gas storage. Besides that, the creation of 3D kerogen models via simulated annealing has enabled us to understand how maturity level affects the structural heterogeneity of the matrices and, ultimately CH4 diffusion. Immature and overmature kerogen types were identified to having fast CH4 diffusion. Subsequently, our proof-of-concept study demonstrated the feasibility of recovering CH4 via supercritical CO2 injection into kerogens. Insights from our study also explained why full recovery of CH4 is impossible. A pseudo-second-order rate law can predict the kinetics of such a process and the replacement quantity. A higher CO2 input required than the CH4 recovered highlights the possibility of achieving a net-zero future via geological CO2 sequestration

    Leveraging elasticity theory to calculate cell forces: From analytical insights to machine learning

    Get PDF
    Living cells possess capabilities to detect and respond to mechanical features of their surroundings. In traction force microscopy, the traction of cells on an elastic substrate is made visible by observing substrate deformation as measured by the movement of embedded marker beads. Describing the substrates by means of elasticity theory, we can calculate the adhesive forces, improving our understanding of cellular function and behavior. In this dissertation, I combine analytical solutions with numerical methods and machine learning techniques to improve traction prediction in a range of experimental applications. I describe how to include the normal traction component in regularization-based Fourier approaches, which I apply to experimental data. I compare the dominant strategies for traction reconstruction, the direct method and inverse, regularization-based approaches and find, that the latter are more precise while the former is more stress resilient to noise. I find that a point-force based reconstruction can be used to study the force balance evolution in response to microneedle pulling showing a transition from a dipolar into a monopolar force arrangement. Finally, I show how a conditional invertible neural network not only reconstructs adhesive areas more localized, but also reveals spatial correlations and variations in reliability of traction reconstructions

    Structural basis of bacterial glyeans biosynthesis and processing: ímpact in human health and disease

    Get PDF
    181 p.El objetivo a largo plazo de nuestro grupo es estudiar a nivel molecular la estructura, la especificidad por sustrato y el mecanismo de acción de diferentes enzimas bacterianas involucradas en el reconocimiento o modificación de carbohidratos que sean relevantes en la interacción, tanto beneficiosa como patogénica, con el ser humano como hospedador.En este contexto, durante mi tesis, he trabajado en la comprensión a nivel estructural de la catálisis, así como del mecanismo de reconocimiento del sustrato de enzimas de bacterias tanto beneficiosas (Akkermansia muciniphila) como perjudiciales (Mycobacterium tuberculosis) para la salud del hospedador. Siguiendo este criterio, la tesis ha sido dividida en dos secciones; el estudio de la maquinaria enzimática que Akkermansia muciniphila, bacteria que forman parte de la microbiota intestinal, presenta para la digestión de los azúcares presentes en las mucinas por un lado, y el estudio de la biosíntesis de los glucolípidos (fosfatidil-myo-inositol mannósidos; PIMs, lipomannanos; LM y lipoarabinomannanos; LAM) presentes en la compleja envoltura celular de M. tuberculosis, por otro lado

    Universal diffusion of dendrimers in a semidilute solution of linear polymers

    Full text link
    The static and dynamic properties of dendrimers in semidilute solutions of linear chains of comparable size are investigated using Brownian dynamics simulations. The radius of gyration and diffusivity of a wide variety of low generation dendrimers and linear chains in solution follow universal scaling laws independent of their topology. Analysis of the shape functions and internal density of dendrimers shows that they are more spherical than linear chains and have a dense core. At intermediate times, dendrimers become subdiffusive, with an exponent higher than that previously reported for nanoparticles in semidilute polymer solutions. The long-time diffusivity of dendrimers does not follow theoretical predictions for nanoparticles. We propose a new scaling law for the long-time diffusion coefficient of dendrimers which accounts for the fact that, unlike nanoparticles, dendrimers shrink with an increase in background solution concentration. Analysis of the properties of a special case of a higher functionality dendrimer shows a transition from polymer-like to nanoparticle-like behaviour.Comment: 20 pages, 14 figures, includes supplementary informatio
    corecore