904 research outputs found

    A NOVEL RISK EVALUATION APPROACH FOR FREQUENTLY ENCOUNTERED RISKS IN SHIP ENGINE ROOMS

    Get PDF
    The purpose of this study is to evaluate risks which are frequently encountered in the engine room on-board. In this context, twenty common risks are assessed using the neutrosophic analytic hierarchy process (N-AHP) and trapezoidal fuzzy technique for order preference by similarity to ideal solution (TrF-TOPSIS). In maritime risk evaluation, since it is frequently required the linguistic assessment of decision-makers to achieve a robust risk assessment tool, neutrosophic sets and fuzzy sets are used together in this study. Neutrosophic sets represent real-world problems effectively by considering all aspects of decision-making situations, (i.e. truthiness, indeterminacy, and falsity). Therefore, AHP is integrated with neutrosophic sets to assign weights of risk parameters initially. Then, the encountered risks are prioritized by TrF-TOPSIS. Finally, preventative actions for the risks have been discussed. In conclusion of the study, it is shown that skin exposure to the fuels/oils, exposure to chemicals and exposure to high pressure and temperature liquids are the most important risks through the engine room on-board. This study both emphasizes the importance of preventing damage to crew in the risk assessment of ship engine rooms and aims to increase the level of safety control and minimize the potential environmental impacts of a ship\u27s damage

    Multi-criteria decision making support tools for maintenance of marine machinery systems

    Get PDF
    PhD ThesisFor ship systems to remain reliable and safe they must be effectively maintained through a sound maintenance management system. The three major elements of maintenance management systems are; risk assessment, maintenance strategy selection and maintenance task interval determination. The implementation of these elements will generally determine the level of ship system safety and reliability. Reliability Centred Maintenance (RCM) is one method that can be used to optimise maintenance management systems. However the tools used within the framework of the RCM methodology have limitations which may compromise the efficiency of RCM in achieving the desired results. This research presents the development of tools to support the RCM methodology and improve its effectiveness in marine maintenance system applications. Each of the three elements of the maintenance management system has been considered in turn. With regard to risk assessment, two Multi-Criteria Decision Making techniques (MCDM); Vlsekriterijumska Optimizacija Ikompromisno Resenje, meaning: Multi-criteria Optimization and Compromise Solution (VIKOR) and Compromise Programming (CP) have been integrated into Failure Mode and Effects Analysis (FMEA) along with a novel averaging technique which allows the use of incomplete or imprecise failure data. Three hybrid MCDM techniques have then been compared for maintenance strategy selection; an integrated Delphi-Analytical Hierarchy Process (AHP) methodology, an integrated Delphi-AHP-PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluation) methodology and an integrated Delphi-AHP-TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methodology. Maintenance task interval determination has been implemented using a MCDM framework integrating a delay time model to determine the optimum inspection interval and using the age replacement model for the scheduled replacement tasks. A case study based on a marine Diesel engine has been developed with input from experts in the field to demonstrate the effectiveness of the proposed methodologies.Tertiary Education Trust Fund (TETFUND), a scholarship body of the Federal Republic of Nigeria for providing the fund for this research. My gratitude also goes to Federal University of Petroleum Resource, Effurun, Nigeria for giving me the opportunity to be a beneficiary of the scholarship

    Fuzzy multi criteria decision making approach for technology selection for emissions reduction from seaborne transportation under uncertainty and vagueness

    Get PDF

    Study on risk assessment of methanol fueled ship

    Get PDF

    Intuitionistic fuzzy-based model for failure detection

    Get PDF

    The low-carbon development of shipping industry in China

    Get PDF

    Multi-Objective Topology Optimization for Curved Arm of Multifunctional Billet Tong Based on Characterization of Working Conditions

    Get PDF
    A windlass driven heavy duty multifunctional billet tong was designed for large-scale forging and casting to reduce the number of auxiliary material handling devices in manufacturing workshops. To improve its mechanical performance and safety, a novel multi-objective topology optimization method for its curved arm is proposed in this paper. Firstly, the influence of different open angles and working frequencies for the curved arm was simplified to a multi-objective optimization problem. A comprehensive evaluation function was constructed using the compromise programming method, and a mathematical model of multi-objective topology optimization was established. Meanwhile, a radar chart was employed to portray the comparative measures of working conditions, the weight coefficient for each working condition was determined based on the corresponding enclosed areas, combining the stress indices, the displacement indices and the frequency indices of all working conditions. The optimization results showed that the stiffness and strength of the curved arm can be improved while its weight can be reduced by 10.77%, which shows that it is feasible and promising to achieve a lightweight design of the curved arm of a billet tong. The proposed method can be extended to other equipment with complex working conditions

    Multi-Objective Topology Optimization for Curved Arm of Multifunctional Billet Tong Based on Characterization of Working Conditions

    Get PDF
    A windlass driven heavy duty multifunctional billet tong was designed for large-scale forging and casting to reduce the number of auxiliary material handling devices in manufacturing workshops. To improve its mechanical performance and safety, a novel multi-objective topology optimization method for its curved arm is proposed in this paper. Firstly, the influence of different open angles and working frequencies for the curved arm was simplified to a multi-objective optimization problem. A comprehensive evaluation function was constructed using the compromise programming method, and a mathematical model of multi-objective topology optimization was established. Meanwhile, a radar chart was employed to portray the comparative measures of working conditions, the weight coefficient for each working condition was determined based on the corresponding enclosed areas, combining the stress indices, the displacement indices and the frequency indices of all working conditions. The optimization results showed that the stiffness and strength of the curved arm can be improved while its weight can be reduced by 10.77%, which shows that it is feasible and promising to achieve a lightweight design of the curved arm of a billet tong. The proposed method can be extended to other equipment with complex working conditions

    A socio-economic analysis of automated container terminal (ACT) concept in Indonesia : case study : New Priok Container Terminal One

    Get PDF
    corecore