5,852 research outputs found

    Sampling-based speech parameter generation using moment-matching networks

    Full text link
    This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.Comment: Submitted to INTERSPEECH 201

    Sparsity and cosparsity for audio declipping: a flexible non-convex approach

    Get PDF
    This work investigates the empirical performance of the sparse synthesis versus sparse analysis regularization for the ill-posed inverse problem of audio declipping. We develop a versatile non-convex heuristics which can be readily used with both data models. Based on this algorithm, we report that, in most cases, the two models perform almost similarly in terms of signal enhancement. However, the analysis version is shown to be amenable for real time audio processing, when certain analysis operators are considered. Both versions outperform state-of-the-art methods in the field, especially for the severely saturated signals

    Expediting TTS Synthesis with Adversarial Vocoding

    Get PDF
    Recent approaches in text-to-speech (TTS) synthesis employ neural network strategies to vocode perceptually-informed spectrogram representations directly into listenable waveforms. Such vocoding procedures create a computational bottleneck in modern TTS pipelines. We propose an alternative approach which utilizes generative adversarial networks (GANs) to learn mappings from perceptually-informed spectrograms to simple magnitude spectrograms which can be heuristically vocoded. Through a user study, we show that our approach significantly outperforms na\"ive vocoding strategies while being hundreds of times faster than neural network vocoders used in state-of-the-art TTS systems. We also show that our method can be used to achieve state-of-the-art results in unsupervised synthesis of individual words of speech.Comment: Published as a conference paper at INTERSPEECH 201

    Efficiency of Spearcon-Enhanced Navigation of One Dimensional Electronic Menus

    Get PDF
    This study simulated and compared cell phone contact book menu navigation using combinations of both auditory (text-to-speech and spearcons) and visual cues. A total of 127 undergraduates participated in a study that required using one of five conditions of alphabetically listed menu cues to find a target name. Participants using visual cues (either alone or combined with auditory cues) outperformed those using only auditory cues. Performance was not found to be significantly different among the three auditory only conditions. When combined with visual cues, spearcons improved navigational efficiency more than both text-to-speech cues and menus using no sound, and provided evidence for the ability of sound to enhance visual menus. Research results provide evidence applicable to efficient auditory menu creation.Gregory Corso - Committee Member/Second Reader ; Bruce Walker - Faculty Mento

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients
    • …
    corecore