17,906 research outputs found

    Quality Control of Neuron Reconstruction Based on Deep Learning

    Full text link
    Neuron reconstruction is essential to generate exquisite neuron connectivity map for understanding brain function. Despite the significant amount of effect that has been made on automatic reconstruction methods, manual tracing by well-trained human annotators is still necessary. To ensure the quality of reconstructed neurons and provide guidance for annotators to improve their efficiency, we propose a deep learning based quality control method for neuron reconstruction in this paper. By formulating the quality control problem into a binary classification task regarding each single point, the proposed approach overcomes the technical difficulties resulting from the large image size and complex neuron morphology. Not only it provides the evaluation of reconstruction quality, but also can locate exactly where the wrong tracing begins. This work presents one of the first comprehensive studies for whole-brain scale quality control of neuron reconstructions. Experiments on five-fold cross validation with a large dataset demonstrate that the proposed approach can detect 74.7% errors with only 1.4% false alerts.Comment: 9 pages, 2 figure

    Mapping Generative Models onto a Network of Digital Spiking Neurons

    Full text link
    Stochastic neural networks such as Restricted Boltzmann Machines (RBMs) have been successfully used in applications ranging from speech recognition to image classification. Inference and learning in these algorithms use a Markov Chain Monte Carlo procedure called Gibbs sampling, where a logistic function forms the kernel of this sampler. On the other side of the spectrum, neuromorphic systems have shown great promise for low-power and parallelized cognitive computing, but lack well-suited applications and automation procedures. In this work, we propose a systematic method for bridging the RBM algorithm and digital neuromorphic systems, with a generative pattern completion task as proof of concept. For this, we first propose a method of producing the Gibbs sampler using bio-inspired digital noisy integrate-and-fire neurons. Next, we describe the process of mapping generative RBMs trained offline onto the IBM TrueNorth neurosynaptic processor -- a low-power digital neuromorphic VLSI substrate. Mapping these algorithms onto neuromorphic hardware presents unique challenges in network connectivity and weight and bias quantization, which, in turn, require architectural and design strategies for the physical realization. Generative performance metrics are analyzed to validate the neuromorphic requirements and to best select the neuron parameters for the model. Lastly, we describe a design automation procedure which achieves optimal resource usage, accounting for the novel hardware adaptations. This work represents the first implementation of generative RBM inference on a neuromorphic VLSI substrate.Comment: A similar version of this manuscript has been submitted to IEEE TBioCAS for revision in October 201

    PILAE: A Non-gradient Descent Learning Scheme for Deep Feedforward Neural Networks

    Full text link
    In this work, a non-gradient descent learning scheme is proposed for deep feedforward neural networks (DNN). As we known, autoencoder can be used as the building blocks of the multi-layer perceptron (MLP) deep neural network. So, the MLP will be taken as an example to illustrate the proposed scheme of pseudoinverse learning algorithm for autoencoder (PILAE) training. The PILAE with low rank approximation is a non-gradient based learning algorithm, and the encoder weight matrix is set to be the low rank approximation of the pseudoinverse of the input matrix, while the decoder weight matrix is calculated by the pseudoinverse learning algorithm. It is worth to note that only few network structure hyperparameters need to be tuned. Hence, the proposed algorithm can be regarded as a quasi-automated training algorithm which can be utilized in autonomous machine learning research field. The experimental results show that the proposed learning scheme for DNN can achieve better performance on considering the tradeoff between training efficiency and classification accuracy.Comment: This work is our effort toward to realize AutoM

    Revisit Lmser and its further development based on convolutional layers

    Full text link
    Proposed in 1991, Least Mean Square Error Reconstruction for self-organizing network, shortly Lmser, was a further development of the traditional auto-encoder (AE) by folding the architecture with respect to the central coding layer and thus leading to the features of symmetric weights and neurons, as well as jointly supervised and unsupervised learning. However, its advantages were only demonstrated in a one-hidden-layer implementation due to the lack of computing resources and big data at that time. In this paper, we revisit Lmser from the perspective of deep learning, develop Lmser network based on multiple convolutional layers, which is more suitable for image-related tasks, and confirm several Lmser functions with preliminary demonstrations on image recognition, reconstruction, association recall, and so on. Experiments demonstrate that Lmser indeed works as indicated in the original paper, and it has promising performance in various applications

    Deep Learning with the Random Neural Network and its Applications

    Full text link
    The random neural network (RNN) is a mathematical model for an "integrate and fire" spiking network that closely resembles the stochastic behaviour of neurons in mammalian brains. Since its proposal in 1989, there have been numerous investigations into the RNN's applications and learning algorithms. Deep learning (DL) has achieved great success in machine learning. Recently, the properties of the RNN for DL have been investigated, in order to combine their power. Recent results demonstrate that the gap between RNNs and DL can be bridged and the DL tools based on the RNN are faster and can potentially be used with less energy expenditure than existing methods.Comment: 23 pages, 19 figure

    Revisit Fuzzy Neural Network: Demystifying Batch Normalization and ReLU with Generalized Hamming Network

    Full text link
    We revisit fuzzy neural network with a cornerstone notion of generalized hamming distance, which provides a novel and theoretically justified framework to re-interpret many useful neural network techniques in terms of fuzzy logic. In particular, we conjecture and empirically illustrate that, the celebrated batch normalization (BN) technique actually adapts the normalized bias such that it approximates the rightful bias induced by the generalized hamming distance. Once the due bias is enforced analytically, neither the optimization of bias terms nor the sophisticated batch normalization is needed. Also in the light of generalized hamming distance, the popular rectified linear units (ReLU) can be treated as setting a minimal hamming distance threshold between network inputs and weights. This thresholding scheme, on the one hand, can be improved by introducing double thresholding on both extremes of neuron outputs. On the other hand, ReLUs turn out to be non-essential and can be removed from networks trained for simple tasks like MNIST classification. The proposed generalized hamming network (GHN) as such not only lends itself to rigorous analysis and interpretation within the fuzzy logic theory but also demonstrates fast learning speed, well-controlled behaviour and state-of-the-art performances on a variety of learning tasks.Comment: 10 pages, 5 figures, NIPS 201

    A Gentle Introduction to Deep Learning in Medical Image Processing

    Full text link
    This paper tries to give a gentle introduction to deep learning in medical image processing, proceeding from theoretical foundations to applications. We first discuss general reasons for the popularity of deep learning, including several major breakthroughs in computer science. Next, we start reviewing the fundamental basics of the perceptron and neural networks, along with some fundamental theory that is often omitted. Doing so allows us to understand the reasons for the rise of deep learning in many application domains. Obviously medical image processing is one of these areas which has been largely affected by this rapid progress, in particular in image detection and recognition, image segmentation, image registration, and computer-aided diagnosis. There are also recent trends in physical simulation, modelling, and reconstruction that have led to astonishing results. Yet, some of these approaches neglect prior knowledge and hence bear the risk of producing implausible results. These apparent weaknesses highlight current limitations of deep learning. However, we also briefly discuss promising approaches that might be able to resolve these problems in the future.Comment: Accepted by Journal of Medical Physics; Final Version after revie

    Analysis of Extremely Obese Individuals Using Deep Learning Stacked Autoencoders and Genome-Wide Genetic Data

    Full text link
    The aetiology of polygenic obesity is multifactorial, which indicates that life-style and environmental factors may influence multiples genes to aggravate this disorder. Several low-risk single nucleotide polymorphisms (SNPs) have been associated with BMI. However, identified loci only explain a small proportion of the variation ob-served for this phenotype. The linear nature of genome wide association studies (GWAS) used to identify associations between genetic variants and the phenotype have had limited success in explaining the heritability variation of BMI and shown low predictive capacity in classification studies. GWAS ignores the epistatic interactions that less significant variants have on the phenotypic outcome. In this paper we utilise a novel deep learning-based methodology to reduce the high dimensional space in GWAS and find epistatic interactions between SNPs for classification purposes. SNPs were filtered based on the effects associations have with BMI. Since Bonferroni adjustment for multiple testing is highly conservative, an important proportion of SNPs involved in SNP-SNP interactions are ignored. Therefore, only SNPs with p-values < 1x10-2 were considered for subsequent epistasis analysis using stacked auto encoders (SAE). This allows the nonlinearity present in SNP-SNP interactions to be discovered through progressively smaller hidden layer units and to initialise a multi-layer feedforward artificial neural network (ANN) classifier. The classifier is fine-tuned to classify extremely obese and non-obese individuals. The best results were obtained with 2000 compressed units (SE=0.949153, SP=0.933014, Gini=0.949936, Lo-gloss=0.1956, AUC=0.97497 and MSE=0.054057). Using 50 compressed units it was possible to achieve (SE=0.785311, SP=0.799043, Gini=0.703566, Logloss=0.476864, AUC=0.85178 and MSE=0.156315).Comment: 13 pages, 4 figures, 13 equations, 2 tables, conferenc

    Stochastic Bottleneck: Rateless Auto-Encoder for Flexible Dimensionality Reduction

    Full text link
    We propose a new concept of rateless auto-encoders (RL-AEs) that enable a flexible latent dimensionality, which can be seamlessly adjusted for varying distortion and dimensionality requirements. In the proposed RL-AEs, instead of a deterministic bottleneck architecture, we use an over-complete representation that is stochastically regularized with weighted dropouts, in a manner analogous to sparse AE (SAE). Unlike SAEs, our RL-AEs employ monotonically increasing dropout rates across the latent representation nodes such that the latent variables become sorted by importance like in principal component analysis (PCA). This is motivated by the rateless property of conventional PCA, where the least important principal components can be discarded to realize variable rate dimensionality reduction that gracefully degrades the distortion. In contrast, since the latent variables of conventional AEs are equally important for data reconstruction, they cannot be simply discarded to further reduce the dimensionality after the AE model is trained. Our proposed stochastic bottleneck framework enables seamless rate adaptation with high reconstruction performance, without requiring predetermined latent dimensionality at training. We experimentally demonstrate that the proposed RL-AEs can achieve variable dimensionality reduction while achieving low distortion compared to conventional AEs.Comment: 14 pages, 12 figures, ISIT 2020 accepte

    A learning framework for winner-take-all networks with stochastic synapses

    Full text link
    Many recent generative models make use of neural networks to transform the probability distribution of a simple low-dimensional noise process into the complex distribution of the data. This raises the question of whether biological networks operate along similar principles to implement a probabilistic model of the environment through transformations of intrinsic noise processes. The intrinsic neural and synaptic noise processes in biological networks, however, are quite different from the noise processes used in current abstract generative networks. This, together with the discrete nature of spikes and local circuit interactions among the neurons, raises several difficulties when using recent generative modeling frameworks to train biologically motivated models. In this paper, we show that a biologically motivated model based on multi-layer winner-take-all (WTA) circuits and stochastic synapses admits an approximate analytical description. This allows us to use the proposed networks in a variational learning setting where stochastic backpropagation is used to optimize a lower bound on the data log likelihood, thereby learning a generative model of the data. We illustrate the generality of the proposed networks and learning technique by using them in a structured output prediction task, and in a semi-supervised learning task. Our results extend the domain of application of modern stochastic network architectures to networks where synaptic transmission failure is the principal noise mechanism
    corecore