466,382 research outputs found

    Quality Aware Network for Set to Set Recognition

    Full text link
    This paper targets on the problem of set to set recognition, which learns the metric between two image sets. Images in each set belong to the same identity. Since images in a set can be complementary, they hopefully lead to higher accuracy in practical applications. However, the quality of each sample cannot be guaranteed, and samples with poor quality will hurt the metric. In this paper, the quality aware network (QAN) is proposed to confront this problem, where the quality of each sample can be automatically learned although such information is not explicitly provided in the training stage. The network has two branches, where the first branch extracts appearance feature embedding for each sample and the other branch predicts quality score for each sample. Features and quality scores of all samples in a set are then aggregated to generate the final feature embedding. We show that the two branches can be trained in an end-to-end manner given only the set-level identity annotation. Analysis on gradient spread of this mechanism indicates that the quality learned by the network is beneficial to set-to-set recognition and simplifies the distribution that the network needs to fit. Experiments on both face verification and person re-identification show advantages of the proposed QAN. The source code and network structure can be downloaded at https://github.com/sciencefans/Quality-Aware-Network.Comment: Accepted at CVPR 201

    Learning to Generate and Refine Object Proposals

    Get PDF
    Visual object recognition is a fundamental and challenging problem in computer vision. To build a practical recognition system, one is first confronted with high computation complexity due to an enormous search space from an image, which is caused by large variations in object appearance, pose and mutual occlusion, as well as other environmental factors. To reduce the search complexity, a moderate set of image regions that are likely to contain an object, regardless of its category, are usually first generated in modern object recognition subsystems. These possible object regions are called object proposals, object hypotheses or object candidates, which can be used for down-stream classification or global reasoning in many different vision tasks like object detection, segmentation and tracking, etc. This thesis addresses the problem of object proposal generation, including bounding box and segment proposal generation, in real-world scenarios. In particular, we investigate the representation learning in object proposal generation with 3D cues and contextual information, aiming to propose higher-quality object candidates which have higher object recall, better boundary coverage and lower number. We focus on three main issues: 1) how can we incorporate additional geometric and high-level semantic context information into the proposal generation for stereo images? 2) how do we generate object segment proposals for stereo images with learning representations and learning grouping process? and 3) how can we learn a context-driven representation to refine segment proposals efficiently? In this thesis, we propose a series of solutions to address each of the raised problems. We first propose a semantic context and depth-aware object proposal generation method. We design a set of new cues to encode the objectness, and then train an efficient random forest classifier to re-rank the initial proposals and linear regressors to fine-tune their locations. Next, we extend the task to the segment proposal generation in the same setting and develop a learning-based segment proposal generation method for stereo images. Our method makes use of learned deep features and designed geometric features to represent a region and learns a similarity network to guide the superpixel grouping process. We also learn a ranking network to predict the objectness score for each segment proposal. To address the third problem, we take a transformation-based approach to improve the quality of a given segment candidate pool based on context information. We propose an efficient deep network that learns affine transformations to warp an initial object mask towards nearby object region, based on a novel feature pooling strategy. Finally, we extend our affine warping approach to address the object-mask alignment problem and particularly the problem of refining a set of segment proposals. We design an end-to-end deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask towards the ground truth, based on a multi-level dual mask feature pooling strategy. We evaluate all our approaches on several publicly available object recognition datasets and show superior performance

    SAFE: Scale Aware Feature Encoder for Scene Text Recognition

    Full text link
    In this paper, we address the problem of having characters with different scales in scene text recognition. We propose a novel scale aware feature encoder (SAFE) that is designed specifically for encoding characters with different scales. SAFE is composed of a multi-scale convolutional encoder and a scale attention network. The multi-scale convolutional encoder targets at extracting character features under multiple scales, and the scale attention network is responsible for selecting features from the most relevant scale(s). SAFE has two main advantages over the traditional single-CNN encoder used in current state-of-the-art text recognizers. First, it explicitly tackles the scale problem by extracting scale-invariant features from the characters. This allows the recognizer to put more effort in handling other challenges in scene text recognition, like those caused by view distortion and poor image quality. Second, it can transfer the learning of feature encoding across different character scales. This is particularly important when the training set has a very unbalanced distribution of character scales, as training with such a dataset will make the encoder biased towards extracting features from the predominant scale. To evaluate the effectiveness of SAFE, we design a simple text recognizer named scale-spatial attention network (S-SAN) that employs SAFE as its feature encoder, and carry out experiments on six public benchmarks. Experimental results demonstrate that S-SAN can achieve state-of-the-art (or, in some cases, extremely competitive) performance without any post-processing.Comment: ACCV201

    Multicolumn Networks for Face Recognition

    Full text link
    The objective of this work is set-based face recognition, i.e. to decide if two sets of images of a face are of the same person or not. Conventionally, the set-wise feature descriptor is computed as an average of the descriptors from individual face images within the set. In this paper, we design a neural network architecture that learns to aggregate based on both "visual" quality (resolution, illumination), and "content" quality (relative importance for discriminative classification). To this end, we propose a Multicolumn Network (MN) that takes a set of images (the number in the set can vary) as input, and learns to compute a fix-sized feature descriptor for the entire set. To encourage high-quality representations, each individual input image is first weighted by its "visual" quality, determined by a self-quality assessment module, and followed by a dynamic recalibration based on "content" qualities relative to the other images within the set. Both of these qualities are learnt implicitly during training for set-wise classification. Comparing with the previous state-of-the-art architectures trained with the same dataset (VGGFace2), our Multicolumn Networks show an improvement of between 2-6% on the IARPA IJB face recognition benchmarks, and exceed the state of the art for all methods on these benchmarks.Comment: To appear in BMVC201

    Scaling Speech Enhancement in Unseen Environments with Noise Embeddings

    Get PDF
    We address the problem of speech enhancement generalisation to unseen environments by performing two manipulations. First, we embed an additional recording from the environment alone, and use this embedding to alter activations in the main enhancement subnetwork. Second, we scale the number of noise environments present at training time to 16,784 different environments. Experiment results show that both manipulations reduce word error rates of a pretrained speech recognition system and improve enhancement quality according to a number of performance measures. Specifically, our best model reduces the word error rate from 34.04% on noisy speech to 15.46% on the enhanced speech. Enhanced audio samples can be found in https://speechenhancement.page.link/samples
    • …
    corecore