1,614 research outputs found

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Managing the Provenance of Crowdsourced Disruption Reports

    Get PDF
    A paid open access option is available for this journal. Authors own final version only can be archived Publisher's version/PDF cannot be used On author's website immediately On any open access repository after 12 months from publication Published source must be acknowledged Must link to publisher version Set phrase to accompany link to published version (see policy) Articles in some journals can be made Open Access on payment of additional chargePublisher PD

    Iterative Bayesian Learning for Crowdsourced Regression

    Full text link
    Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volume of tasks. As many low-paid workers are prone to give noisy answers, a common practice is to add redundancy by assigning multiple workers to each task and then simply average out these answers. However, to fully harness the wisdom of the crowd, one needs to learn the heterogeneous quality of each worker. We resolve this fundamental challenge in crowdsourced regression tasks, i.e., the answer takes continuous labels, where identifying good or bad workers becomes much more non-trivial compared to a classification setting of discrete labels. In particular, we introduce a Bayesian iterative scheme and show that it provably achieves the optimal mean squared error. Our evaluations on synthetic and real-world datasets support our theoretical results and show the superiority of the proposed scheme

    Accurator: Nichesourcing for Cultural Heritage

    Full text link
    With more and more cultural heritage data being published online, their usefulness in this open context depends on the quality and diversity of descriptive metadata for collection objects. In many cases, existing metadata is not adequate for a variety of retrieval and research tasks and more specific annotations are necessary. However, eliciting such annotations is a challenge since it often requires domain-specific knowledge. Where crowdsourcing can be successfully used for eliciting simple annotations, identifying people with the required expertise might prove troublesome for tasks requiring more complex or domain-specific knowledge. Nichesourcing addresses this problem, by tapping into the expert knowledge available in niche communities. This paper presents Accurator, a methodology for conducting nichesourcing campaigns for cultural heritage institutions, by addressing communities, organizing events and tailoring a web-based annotation tool to a domain of choice. The contribution of this paper is threefold: 1) a nichesourcing methodology, 2) an annotation tool for experts and 3) validation of the methodology and tool in three case studies. The three domains of the case studies are birds on art, bible prints and fashion images. We compare the quality and quantity of obtained annotations in the three case studies, showing that the nichesourcing methodology in combination with the image annotation tool can be used to collect high quality annotations in a variety of domains and annotation tasks. A user evaluation indicates the tool is suited and usable for domain specific annotation tasks

    Learning Single-Image Depth from Videos using Quality Assessment Networks

    Full text link
    Depth estimation from a single image in the wild remains a challenging problem. One main obstacle is the lack of high-quality training data for images in the wild. In this paper we propose a method to automatically generate such data through Structure-from-Motion (SfM) on Internet videos. The core of this method is a Quality Assessment Network that identifies high-quality reconstructions obtained from SfM. Using this method, we collect single-view depth training data from a large number of YouTube videos and construct a new dataset called YouTube3D. Experiments show that YouTube3D is useful in training depth estimation networks and advances the state of the art of single-view depth estimation in the wild

    Much Ado About Time: Exhaustive Annotation of Temporal Data

    Full text link
    Large-scale annotated datasets allow AI systems to learn from and build upon the knowledge of the crowd. Many crowdsourcing techniques have been developed for collecting image annotations. These techniques often implicitly rely on the fact that a new input image takes a negligible amount of time to perceive. In contrast, we investigate and determine the most cost-effective way of obtaining high-quality multi-label annotations for temporal data such as videos. Watching even a short 30-second video clip requires a significant time investment from a crowd worker; thus, requesting multiple annotations following a single viewing is an important cost-saving strategy. But how many questions should we ask per video? We conclude that the optimal strategy is to ask as many questions as possible in a HIT (up to 52 binary questions after watching a 30-second video clip in our experiments). We demonstrate that while workers may not correctly answer all questions, the cost-benefit analysis nevertheless favors consensus from multiple such cheap-yet-imperfect iterations over more complex alternatives. When compared with a one-question-per-video baseline, our method is able to achieve a 10% improvement in recall 76.7% ours versus 66.7% baseline) at comparable precision (83.8% ours versus 83.0% baseline) in about half the annotation time (3.8 minutes ours compared to 7.1 minutes baseline). We demonstrate the effectiveness of our method by collecting multi-label annotations of 157 human activities on 1,815 videos.Comment: HCOMP 2016 Camera Read
    corecore