62,459 research outputs found

    Qualitative physics in virtual environments

    Get PDF
    In this paper, we describe a new approach to the creation of virtual environments, which uses qualitative physics to implement object behaviour. We adopted Qualitative Process Theory as a qualitative reasoning formalism, due to its representational properties (e.g., its orientation towards process ontologies and its explicit formulation of process’ pre-conditions). The system we describe is developed using a game engine and takes advantage of its event-based system to integrate qualitative process simulation in an interactive fashion. We use a virtual kitchen as a test environment. In this virtual world, we have implemented various behavioural aspects: physical object behaviour, complex device behaviour (appliances) and “alternative” (i.e. non-realistic) behaviours, which can all be simulated in user real-time. After a presentation of the system architecture and its implementation, we discuss example results from the prototype. This approach has potential applications in simulation and training, as well as in entertainment and digital arts. This work also constitutes a test case for the integration of an Artificial Intelligence technique into 3D user interfaces

    A Framework for Designing 3d Virtual Environments

    Get PDF
    The process of design and development of virtual environments can be supported by tools and frameworks, to save time in technical aspects and focusing on the content. In this paper we present an academic framework which provides several levels of abstraction to ease this work. It includes state-of-the-art components we devised or integrated adopting open-source solutions in order to face specific problems. Its architecture is modular and customizable, the code is open-source.\u

    Visualisation of semantic architectural information within a game engine environment

    Get PDF
    Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualisation technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualisation for architectural design and construction

    'First Portal in a Storm': A Virtual Space for Transition Students

    Get PDF
    The lives of millennial students are epitomised by ubiquitous information, merged technologies, blurred social-study-work boundaries, multitasking and hyperlinked online interactions (Oblinger & Oblinger, 2005). These characteristics have implications for the design of online spaces that aim to provide virtual access to course materials, administrative processes and support information, all of which is required by students to steer a course through the storm of their transition university experience. Previously we summarised the challenges facing first year students (Kift & Nelson, 2005) and investigated their current online engagement patterns, which revealed three issues for consideration when designing virtual spaces (Nelson, Kift & Harper, 2005). In this paper we continue our examination of students’ interactions with online spaces by considering the perceptions and use of technology by millennial students as well as projections for managing the virtual learning environments of the future. The findings from this analysis are informed by our previous work to conceptualise and describe the architecture of a transition portal

    The Analysis of design and manufacturing tasks using haptic and immersive VR - Some case studies

    Get PDF
    The use of virtual reality in interactive design and manufacture has been researched extensively but the practical application of this technology in industry is still very much in its infancy. This is surprising as one would have expected that, after some 30 years of research commercial applications of interactive design or manufacturing planning and analysis would be widespread throughout the product design domain. One of the major but less well known advantages of VR technology is that logging the user gives a great deal of rich data which can be used to automatically generate designs or manufacturing instructions, analyse design and manufacturing tasks, map engineering processes and, tentatively, acquire expert knowledge. The authors feel that the benefits of VR in these areas have not been fully disseminated to the wider industrial community and - with the advent of cheaper PC-based VR solutions - perhaps a wider appreciation of the capabilities of this type of technology may encourage companies to adopt VR solutions for some of their product design processes. With this in mind, this paper will describe in detail applications of haptics in assembly demonstrating how user task logging can lead to the analysis of design and manufacturing tasks at a level of detail not previously possible as well as giving usable engineering outputs. The haptic 3D VR study involves the use of a Phantom and 3D system to analyse and compare this technology against real-world user performance. This work demonstrates that the detailed logging of tasks in a virtual environment gives considerable potential for understanding how virtual tasks can be mapped onto their real world equivalent as well as showing how haptic process plans can be generated in a similar manner to the conduit design and assembly planning HMD VR tool reported in PART A. The paper concludes with a view as to how the authors feel that the use of VR systems in product design and manufacturing should evolve in order to enable the industrial adoption of this technology in the future

    Measuring the Affordances of Studying in a Virtual World

    Get PDF
    There has been much interest at the University of Hertfordshire in the teaching and learning in virtual worlds such as Second Life. The School of Computer Science has established a virtual campus within this system where a broad range of learning and teaching activities take place. These include presenting textual, audio and video learning and teaching materials, delivering virtual lectures, providing simulations and group working areas. Recently there has been a great deal of controversy over such initiatives, for example at my own university lecturers are divided as to the efficacy of such an approach. Some see the initiative as an interesting addition to the range of teaching and learning strategies available, likely to motivate learners. Others see it as a trivial attempt to jump on the latest band wagon, with little pedagogical benefit or justification. My own past research in this area, over several years has related to an estimation of the cognitive load imposed by desktop virtual environments and how this affected learning. Several important variables have been identified in several years of research and their effects measured. In the study presented here, a group of 80 final year computer science students used the Second Life virtual environment in order to support their practical project work. Groups of four learners used the university virtual campus especially modified for this purpose to hold meetings and to manage their software development projects. This study reports on how the group areas were established and used by the learners, the types of activities that took place and the effectiveness of the approach in this context. Quantitative and qualitative research was undertaken and it was found that there were benefits to be had by the use of such virtual environments. Recommendations are made as to the affordances of the Second Life virtual environment for teaching and learning in this context and also discussed are the potential problems inherent in this initiative related to individual differences and the cognitive burden imposed on learners.Peer reviewe

    Exploring the Use of Virtual Worlds as a Scientific Research Platform: The Meta-Institute for Computational Astrophysics (MICA)

    Get PDF
    We describe the Meta-Institute for Computational Astrophysics (MICA), the first professional scientific organization based exclusively in virtual worlds (VWs). The goals of MICA are to explore the utility of the emerging VR and VWs technologies for scientific and scholarly work in general, and to facilitate and accelerate their adoption by the scientific research community. MICA itself is an experiment in academic and scientific practices enabled by the immersive VR technologies. We describe the current and planned activities and research directions of MICA, and offer some thoughts as to what the future developments in this arena may be.Comment: 15 pages, to appear in the refereed proceedings of "Facets of Virtual Environments" (FaVE 2009), eds. F. Lehmann-Grube, J. Sablating, et al., ICST Lecture Notes Ser., Berlin: Springer Verlag (2009); version with full resolution color figures is available at http://www.mica-vw.org/wiki/index.php/Publication
    • …
    corecore