22,861 research outputs found

    Symbolic-numeric interface: A review

    Get PDF
    A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach

    A computer algebra user interface manifesto

    Full text link
    Many computer algebra systems have more than 1000 built-in functions, making expertise difficult. Using mock dialog boxes, this article describes a proposed interactive general-purpose wizard for organizing optional transformations and allowing easy fine grain control over the form of the result even by amateurs. This wizard integrates ideas including: * flexible subexpression selection; * complete control over the ordering of variables and commutative operands, with well-chosen defaults; * interleaving the choice of successively less main variables with applicable function choices to provide detailed control without incurring a combinatorial number of applicable alternatives at any one level; * quick applicability tests to reduce the listing of inapplicable transformations; * using an organizing principle to order the alternatives in a helpful manner; * labeling quickly-computed alternatives in dialog boxes with a preview of their results, * using ellipsis elisions if necessary or helpful; * allowing the user to retreat from a sequence of choices to explore other branches of the tree of alternatives or to return quickly to branches already visited; * allowing the user to accumulate more than one of the alternative forms; * integrating direct manipulation into the wizard; and * supporting not only the usual input-result pair mode, but also the useful alternative derivational and in situ replacement modes in a unified window.Comment: 38 pages, 12 figures, to be published in Communications in Computer Algebr

    Algebraic thinking of grade 8 students in solving word problems with a spreadsheet

    Get PDF
    This paper describes and discusses the activity of grade 8 students on two word problems, using a spreadsheet. We look at particular uses of the spreadsheet, namely at the students’ representations, as ways of eliciting forms of algebraic thinking involved in solving the problems. We aim to see how the spreadsheet allows the solution of formally impracticable problems at students’ level of algebra knowledge, by making them treatable through the computational logic that is intrinsic to the operating modes of the spreadsheet. The protocols of the problem solving sessions provided ways to describe and interpret the relationships that students established between the variables in the problems and their representations in the spreadsheet

    Computations involving differential operators and their actions on functions

    Get PDF
    The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Diagnosing students' difficulties in learning mathematics

    Get PDF
    This study considers the results of a diagnostic test of student difficulty and contrasts the difference in performance between the lower attaining quartile and the higher quartile. It illustrates a difference in qualitative thinking between those who succeed and those who fail in mathematics, illustrating a theory that those who fail are performing a more difficult type of mathematics (coordinating procedures) than those who succeed (manipulating concepts). Students who have to coordinate or reverse processes in time will encounter far greater difficulty than those who can manipulate symbols in a flexible way. The consequences of such a dichotomy and implications for remediation are then considered
    • 

    corecore