12,555 research outputs found

    Predicting epidemic evolution on contact networks from partial observations

    Full text link
    The massive employment of computational models in network epidemiology calls for the development of improved inference methods for epidemic forecast. For simple compartment models, such as the Susceptible-Infected-Recovered model, Belief Propagation was proved to be a reliable and efficient method to identify the origin of an observed epidemics. Here we show that the same method can be applied to predict the future evolution of an epidemic outbreak from partial observations at the early stage of the dynamics. The results obtained using Belief Propagation are compared with Monte Carlo direct sampling in the case of SIR model on random (regular and power-law) graphs for different observation methods and on an example of real-world contact network. Belief Propagation gives in general a better prediction that direct sampling, although the quality of the prediction depends on the quantity under study (e.g. marginals of individual states, epidemic size, extinction-time distribution) and on the actual number of observed nodes that are infected before the observation time

    Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model

    Full text link
    We study variants of the SEIR model for interpreting some qualitative features of the statistics of the Covid-19 epidemic in France. Standard SEIR models distinguish essentially two regimes: either the disease is controlled and the number of infected people rapidly decreases, or the disease spreads and contaminates a significant fraction of the population until herd immunity is achieved. After lockdown, at first sight it seems that social distancing is not enough to control the outbreak. We discuss here a possible explanation, namely that the lockdown is creating social heterogeneity: even if a large majority of the population complies with the lockdown rules, a small fraction of the population still has to maintain a normal or high level of social interactions, such as health workers, providers of essential services, etc. This results in an apparent high level of epidemic propagation as measured through re-estimations of the basic reproduction ratio. However, these measures are limited to averages, while variance inside the population plays an essential role on the peak and the size of the epidemic outbreak and tends to lower these two indicators. We provide theoretical and numerical results to sustain such a view
    • …
    corecore