16 research outputs found

    Aproximace, numerická realizace a kvalitativní analýza kontaktních úloh se třením.

    Get PDF
    Title: Approximation, numerical realization and qualitative analysis of contact problems with friction Author: Tomáš Ligurský Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Jaroslav Haslinger, DrSc., Department of Numerical Mathe- matics Abstract: This thesis deals with theoretical analysis and numerical realization of dis- cretized contact problems with Coulomb friction. First, discretized 3D static contact prob- lems with isotropic and orthotropic Coulomb friction and solution-dependent coefficients of friction are analyzed by means of the fixed-point approach. Existence of at least one solution is established for coefficients of friction represented by positive, bounded and con- tinuous functions. If these functions are in addition Lipschitz continuous and upper bounds of their values together with their Lipschitz moduli are sufficiently small, uniqueness of the solution is guaranteed. Second, properties of solutions parametrized by the coefficient of friction or the load vector are studied in the case of discrete 2D static contact problems with isotropic Coulomb friction and coefficient independent of the solution. Conditions under which there exists a local Lipschitz continuous branch of solutions around a given reference point are established due to two variants of the...Department of Numerical MathematicsKatedra numerické matematikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Multiscale methods for fabrication design

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 135-146).Modern manufacturing technologies such as 3D printing enable the fabrication of objects with extraordinary complexity. Arranging materials to form functional structures can achieve a much wider range of physical properties than in the constituent materials. Many applications have been demonstrated in the fields of mechanics, acoustics, optics, and electromagnetics. Unfortunately, it is difficult to design objects manually in the large combinatorial space of possible designs. Computational design algorithms have been developed to automatically design objects with specified physical properties. However, many types of physical properties are still very challenging to optimize because predictive and efficient simulations are not available for problems such as high-resolution non-linear elasticity or dynamics with friction and impact. For simpler problems such as linear elasticity, where accurate simulation is available, the simulation resolution handled by desktop workstations is still orders of magnitudes below available printing resolutions. We propose to speed up simulation and inverse design process of fabricable objects by using multiscale methods. Our method computes coarse-scale simulation meshes with data-drive material models. It improves the simulation efficiency while preserving the characteristic deformation and motion of elastic objects. The first step in our method is to construct a library of microstructures with their material properties such as Young's modulus and Poisson's ratio. The range of achievable material properties is called the material property gamut. We developed efficient sampling method to compute the gamut by focusing on finding samples near and outside the currently sampled gamut. Next, with a pre-computed gamut, functional objects can be simulated and designed using microstructures instead of the base materials. This allows us to simulate and optimize complex objects at a much coarser scale to improve simulation efficiency. The speed improvement leads to designs with as many as a trillion voxels to match printer resolutions. It also enables computational design of dynamic properties that can be faithfully reproduced in reality. In addition to efficient design optimization, the gamut representation of the microstructure envelope provides a way to discover templates of microstructures with extremal physical properties. In contrast to work where such templates are constructed by hand, our work enables the first computational method to automatically discovery microstructure templates that arise from voxel representations.by Desai Chen.Ph. D

    AIMETA 2005. Atti del XVII Congresso dell'Associazione italiana di meccanica teorica e applicata. Firenze, 11-15 settembre 2005

    Get PDF
    The volume collects the contributions presented at the XVII national congress of AIMETA. The contributions are grouped according to the various sectors of theoretical and applied mechanics and are offered by a vast scientific community. In addition to the classical sectors, themes of interdisciplinary significance and of considerable interest and highly innovative content were added, for the analysis of which small exchange symposia were proposed. Organised according to 52 sessions (plenary and parallel), the volume contains 290 scientific works that are mainly the result of international cooperation. Therefore, the work represents a significant picture of the current situation and future prospects for mechanics

    Numerical Simulation of Frictional Contact Problems using Nagata Patches in Surface Smoothing

    Get PDF
    Tese de doutoramento em Engenharia Mecânica, na especialidade de Tecnologias de Produção, apresentada ao Departamento de Engenharia Mecânica da Faculdade de Ciências e Tecnologia da Universidade de CoimbraAll movements in the world involve contact and friction, from walking to car driving. The contact mechanics has application in many engineering problems, including the connection of structural members by bolts or screws, design of gears and bearings, sheet metal or bulk forming, rolling contact of car tyres, crash analysis of structures, as well as prosthetics in biomedical engineering. Due to the nonlinear and non-smooth nature of contact mechanics (contact area is not known a priori), such problems are currently solved using the finite element method within the field of computational contact mechanics. However, most of the commercial finite element software packages presently available are not entirely capable to solve frictional contact problems, demanding for efficient and robust methods. Therefore, the main objective of this study is the development of algorithms and numerical methods to apply in the numerical simulation of 3D frictional contact problems between bodies undergoing large deformations. The presented original developments are implemented in the in-house finite element code DD3IMP. The formulation of quasi-static frictional contact problems between bodies undergoing large deformations is firstly presented in the framework of the continuum mechanics, following the classical scheme used in solid mechanics. The kinematic description of the deformable bodies is presented adopting an updated Lagrangian formulation. The mechanical behaviour of the bodies is described by an elastoplastic constitutive law in conjunction with an associated flow rule, allowing to model a wide variety of contact problems arising in industrial applications. The frictional contact between the bodies is established by means of two conditions: the principle of impenetrability and the Coulomb’s friction law, both imposed to the contact interface. The augmented Lagrangian method is applied for solving the constrained minimization incremental problem resulting from the frictional contact inequalities, yielding a mixed functional involving both displacements and contact forces. The spatial discretization of the bodies is performed with isoparametric solid finite elements, while the discretization of the contact interface is carried out using the classical Node-to-Segment technique, preventing the slave nodes from penetrating on the master surface. The geometrical part of the contact elements, defined by a slave node and the closest master segment, is created by the contact search algorithm based on the selection of the closest point on the master surface, defined by the normal projection of the slave node. In the particular case of contact between a deformable body and a rigid obstacle, the master rigid surface can be described by smooth parameterizations typically used in CAD models. However, in the general case of contact between deformable bodies, the spatial discretization of both bodies with low order finite elements yields a piecewise bilinear representation of the master surface. This is the central source of problems in solving contact problems involving large sliding, since it leads to the discontinuity of the surface normal vector field. Thus, a surface smoothing procedure based on the Nagata patch interpolation is proposed to describe the master contact surfaces, which led to the development of the Node-to-Nagata contact element. The accuracy of the surface smoothing method using Nagata patches is evaluated by means of simple geometries. The nodal normal vectors required for the Nagata interpolation are evaluated from the CAD geometry in case of rigid master surfaces, while in case of deformable bodies they are approximated using the weighted average of the normal vectors of the neighbouring facets. The residual vectors and tangent matrices of the contact elements are derived coherently with the surface smoothing approach, allowing to obtain quadratic convergence rate in the generalized Newton method used for solving the nonlinear system of equations. The developed surface smoothing method and corresponding contact elements are validated through standard numerical examples with known analytical or semi-analytical solutions. More advanced frictional contact problems are studied, covering the contact of a deformable body with rigid obstacles and the contact between deformable bodies, including self-contact phenomena. The smoothing of the master surface improves the robustness of the computational methods and reduces strongly the non-physical oscillations in the contact force introduced by the traditional faceted description of the contact surface. The presented results are compared with numerical solutions obtained by other authors and experimental results, demonstrating the accuracy and performance of the implemented algorithms for highly nonlinear problems.Todos os movimentos no mundo envolvem contato e atrito, desde andar até conduzir um carro. A mecânica do contacto tem aplicação em muitos problemas de engenharia, incluindo a ligação de elementos estruturais com parafusos, projeto de engrenagens e rolamentos, estampagem ou forjamento, contato entre os pneus e a estrada, colisão de estruturas, bem como o desenvolvimento de próteses em engenharia biomédica. Devido à natureza não-linear e não-suave da mecânica do contato (área de contato desconhecida a priori), tais problemas são atualmente resolvidos usando o método dos elementos finitos no domínio da mecânica do contato computacional. No entanto, a maioria dos programas comerciais de elementos finitos atualmente disponíveis não é totalmente capaz de resolver problemas de contato com atrito, exigindo métodos numéricos mais eficientes e robustos. Portanto, o principal objetivo deste estudo é o desenvolvimento de algoritmos e métodos numéricos para aplicar na simulação numérica de problemas de contato com atrito entre corpos envolvendo grandes deformações. Os desenvolvimentos apresentados são implementados no programa de elementos finitos DD3IMP. A formulação quasi-estática de problemas de contato com atrito entre corpos deformáveis envolvendo grandes deformações é primeiramente apresentada no âmbito da mecânica dos meios contínuos, seguindo o método clássico usado em mecânica dos sólidos. A descrição cinemática dos corpos deformáveis é apresentada adotando uma formulação Lagrangeana reatualizada. O comportamento mecânico dos corpos é descrito por uma lei constitutiva elastoplástica em conjunto com uma lei de plasticidade associada, permitindo modelar uma grande variedade de problemas de contacto envolvidos em aplicações industriais. O contacto com atrito entre os corpos é definido por duas condições: o princípio da impenetrabilidade e a lei de atrito de Coulomb, ambas impostas na interface de contato. O método do Lagrangeano aumentado é aplicado na resolução do problema de minimização com restrições resultantes das condições de contato e atrito, produzindo uma formulação mista envolvendo deslocamentos e forças de contato. A discretização espacial dos corpos é realizada com elementos finitos sólidos isoparamétricos, enquanto a discretização da interface de contacto é realizado utilizando a técnica Node-to-Segment, impedindo os nós slave de penetrar na superfície master. A parte geométrica do elemento de contacto, definida por um nó slave e o segmento master mais próximo, é criada pelo algoritmo de deteção de contacto com base na seleção do ponto mais próximo na superfície master, obtido pela projeção normal do nó slave. No caso particular de contato entre um corpo deformável e um obstáculo rígido, a superfície rígida master pode ser descrita por parametrizações normalmente utilizadas em modelos CAD. No entanto, no caso geral de contato entre corpos deformáveis, a discretização espacial dos corpos com elementos finitos lineares origina uma representação da superfície master por facetas. Esta é a principal fonte de problemas na resolução de problemas de contato envolvendo grandes escorregamentos, uma vez que a distribuição dos vetor normais à superfície é descontínua. Assim, é proposto um método de suavização para descrever as superfícies de contacto master baseado na interpolação Nagata, que conduziu ao desenvolvimento do elemento de contacto Node-to-Nagata. A precisão do método de suavização das superfícies é avaliada através de geometrias simples. Os vetores normais nodais necessários para a interpolação Nagata são avaliados a partir da geometria CAD no caso de superfícies rígidas, enquanto no caso de corpos deformáveis são aproximados utilizando a média ponderada dos vetores normais das facetas vizinhas. Tanto os vetores de segundo membro como as matrizes residuais tangentes dos elementos de contacto são obtidas de forma coerente com o método de suavização da superfície, permitindo obter convergência quadrática no método de Newton generalizado, o qual é utilizado para resolver o sistema de equações não lineares. O método de suavização das superfícies e os elementos de contacto desenvolvidos são validados através de exemplos com soluções analíticas ou semi-analíticas conhecidas. Também são estudados outros problemas de contato mais complexos, incluindo o contato de um corpo deformável com obstáculos rígidos e o contato entre corpos deformáveis, contemplando fenómenos de auto-contato. A suavização da superfície master melhora a robustez dos métodos computacionais e reduz fortemente as oscilações na força de contato, associadas à descrição facetada da superfície de contato. Os resultados são comparados com soluções numéricas de outros autores e com resultados experimentais, demonstrando a precisão e o desempenho dos algoritmos implementados para problemas fortemente não-lineares.Fundação para a Ciência e Tecnologia - SFRH/BD/69140/201

    Advanced Testing and Characterization of Bituminous Materials, Two Volume Set

    Get PDF
    Bituminous materials are used to build durable roads that sustain diverse environmental conditions. However, due to their complexity and a global shortage of these materials, their design and technical development present several challenges. Advanced Testing and Characterisation of Bituminous Materials focuses on fundamental and performance testin

    Aplicación del método de redes a la solución de problemas de fricción seca: superficies suaves a escala atómica y superficies a escala macroscópica

    Get PDF
    [ESP] El estudio del fenómeno cotidiano que supone la fricción sigue manteniendo un gran nivel de dificultad a pesar de su larga historia. Las causas de esta dificultad radican en las diferentes escalas de las características del fenómeno, macroscópicas y microscópicas, y en su distinto comportamiento en condiciones estáticas y dinámicas. A lo mencionado anteriormente se añade que los sistemas sujetos a fricción son muy sensibles al valor de los parámetros que los definen, pudiendo dar lugar a comportamientos caóticos. Así, han ido apareciendo modelos muy diferentes, válidos en un ámbito reducido, y que utilizan simplificaciones importantes que impiden su generalización. En esta tesis se presenta la aplicación del método de simulación por redes a la solución numérica al estudio de la fricción a escalas muy distintas. Por un lado, a escala microscópica se han estudiado los modelos de Frenkel-Kontorova-Tomlinson y de diferentes microscopios de fuerza atómica, relacionados con el análisis de superficies suaves a escala atómica. Por otro lado, a escala macroscópica se han estudiado los modelos relacionados con el análisis de superficies industriales, como el de un mecanismo de freno. Tras presentar en esta memoria una revisión de las distintas formulaciones de la fuerza de fricción, de la naturaleza de las superficies que participan en el fenómeno, así como de la definición de los problemas a analizar (Capítulo 2); se revisan las herramientas relacionadas con el análisis de la estabilidad de los sistemas dinámicos (Capítulo 3). En este sentido, cabe resaltar la utilidad de los diagramas de fase y los exponentes de Lyapunov, incluyendo los algoritmos más recientes para su estimación. El diseño de los modelos en red y la implementación de las condiciones iniciales se explica en el Capítulo 4. Se ha elaborado un programa en Matlab para la generación de modelos en red, simulación en Pspice y representación gráfica de resultados. En el Capítulo 5 se presenta el resultado de la aplicación de los modelos en red a los problemas planteados en el Capítulo 2. Con el fin de verificar la fiabilidad de los modelos propuestos se comparan sus resultados con las soluciones obtenidas por otros métodos numéricos o resultados experimentales, uno de ellos a partir de un dispositivo desarrollado durante la elaboración de esta memoria. [ENG] The study of everyday phenomena involving friction continues to maintain a high level of difficulty despite its long history. The causes of this problem lie in the different scale of the characteristics of the phenomenon, macroscopic and microscopic, and their different behaviour in static and dynamic conditions. To the above is added to the systems subject to friction are very sensitive to the value of the parameters that define them, may lead to chaotic behaviour. Thus, very different models, valid in a narrow scope and using simplifications that prevent generalization, have been appearing. This thesis presents the application of network simulation method to the numerical solution to the study of friction at very different scales. On the one hand, on a microscopic scale Frenkel-Kontorova-Tomlinson and different atomic force microscopes models have been studied, related to the analysis of soft surfaces at the atomic scale. Furthermore, on a macroscopic scale models related to the analysis of industrial areas, such as a brake mechanism have been studied. After presenting herein is a review of the different formulations of the friction force, the nature of the surfaces involved in the phenomenon, as well as the definition of the problems to be analyzed (Chapter 2); reviews the tools related to stability analysis of dynamic systems (Chapter 3). In this regard, we highlight the usefulness of the phase diagrams and Lyapunov exponents, including recent algorithms for their estimation. The design of network models and the implementation of the initial conditions is explained in Chapter 4. It has developed a program in Matlab to generate network models, Pspice simulation and graphical representation of results. Chapter 5 presents the result of the application of network models to problems in Chapter 2. In order to verify the reliability of the proposed models, their results are compared with the solutions obtained by other numerical methods or experimental results, one from a device developed during the preparation of this report.Universidad Politécnica de Cartagen

    Advanced Testing and Characterization of Bituminous Materials, Two Volume Set

    Get PDF
    Bituminous materials are used to build durable roads that sustain diverse environmental conditions. However, due to their complexity and a global shortage of these materials, their design and technical development present several challenges. Advanced Testing and Characterisation of Bituminous Materials focuses on fundamental and performance testin

    Bibliography of Lewis Research Center technical publications announced in 1987

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1987. All the publications were announced in the 1987 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 04. bis 06.07. 2012, Bauhaus-Universität Weimar

    Get PDF
    The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference
    corecore