1,514 research outputs found

    Fisher-KPP dynamics in diffusive Rosenzweig-MacArthur and Holling-Tanner models

    Full text link
    We prove the existence of traveling fronts in diffusive Rosenzweig-MacArthur and Holling-Tanner population models and investigate their relation with fronts in a scalar Fisher-KPP equation. More precisely, we prove the existence of fronts in a Rosenzweig-MacArthur predator-prey model in two situations: when the prey diffuses at the rate much smaller than that of the predator and when both the predator and the prey diffuse very slowly. Both situations are captured as singular perturbations of the associated limiting systems. In the first situation we demonstrate clear relations of the fronts with the fronts in a scalar Fisher-KPP equation. Indeed, we show that the underlying dynamical system in a singular limit is reduced to a scalar Fisher-KPP equation and the fronts supported by the full system are small perturbations of the Fisher-KPP fronts. We obtain a similar result for a diffusive Holling-Tanner population model. In the second situation for the Rosenzweig-MacArthur model we prove the existence of the fronts but without observing a direct relation with Fisher-KPP equation. The analysis suggests that, in a variety of reaction-diffusion systems that rise in population modeling, parameter regimes may be found when the dynamics of the system is inherited from the scalar Fisher-KPP equation

    Spatiotemporal dynamics in a spatial plankton system

    Full text link
    In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots →\rightarrow spot-stripe mixtures→\rightarrow stripes→\rightarrow hole-stripe mixtures holes→\rightarrow wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.Comment: Published Pape

    Sensing and decision-making in random search

    Full text link
    While microscopic organisms can use gradient-based search to locate resources, this strategy can be poorly suited to the sensory signals available to macroscopic organisms. We propose a framework that models search-decision making in cases where sensory signals are infrequent, subject to large fluctuations, and contain little directional information. Our approach simultaneously models an organism's intrinsic movement behavior (e.g. Levy walk) while allowing this behavior to be adjusted based on sensory data. We find that including even a simple model for signal response can dominate other features of random search and greatly improve search performance. In particular, we show that a lack of signal is not a lack of information. Searchers that receive no signal can quickly abandon target-poor regions. Such phenomena naturally give rise to the area-restricted search behavior exhibited by many searching organisms

    The influence of dispersal on a predator-prey system with two habitats

    Get PDF
    Dispersal between different habitats influences the dynamics and stability of populations considerably. Furthermore, these effects depend on the local interactions of a population with other species. Here, we perform a general and comprehensive study of the simplest possible system that includes dispersal and local interactions, namely a 2-patch 2-species system. We evaluate the impact of dispersal on stability and on the occurrence of bifurcations, including pattern forming bifurcations that lead to spatial heterogeneity, in 19 different classes of models with the help of the generalized modelling approach. We find that dispersal often destabilizes equilibria, but it can stabilize them if it increases population losses. If dispersal is nonrandom, i.e. if emigration or immigration rates depend on population densities, the correlation of stability with migration rates is positive in part of the models. We also find that many systems show all four types of bifurcations and that antisynchronous oscillations occur mostly with nonrandom dispersal

    Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka-Volterra Models

    Full text link
    We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka-Volterra type interactions defined on a dd-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka-Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.Comment: 19 pages, 11 figures, 2-column revtex4 format. Minor modifications. Accepted in the Journal of Statistical Physics. Movies corresponding to Figures 2 and 3 are available at http://www.phys.vt.edu/~tauber/PredatorPrey/movies
    • …
    corecore