217 research outputs found

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Connecting qualitative spatial and temporal representations by propositional closure

    Full text link
    This paper establishes new relationships between existing qualitative spatial and temporal representations. Qualitative spatial and temporal representation (QSTR) is concerned with abstractions of infinite spatial and temporal domains, which represent configurations of objects using a finite vocabulary of relations, also called a qualitative calculus. Classically, reasoning in QSTR is based on constraints. An important task is to identify decision procedures that are able to handle constraints from a single calculus or from several calculi. In particular the latter aspect is a longstanding challenge due to the multitude of calculi proposed. In this paper we consider propositional closures of qualitative constraints which enable progress with respect to the longstanding challenge. Propositional closure allows one to establish several translations between distinct calculi. This enables joint reasoning and provides new insights into computational complexity of individual calculi. We conclude that the study of propositional languages instead of previously considered purely relational languages is a viable research direction for QSTR leading to expressive formalisms and practical algorithms

    Intuitive Direction Concepts

    Get PDF
    Abstract Experiments in this article test the hypothesis that formal direction models used in artificial intelligence correspond to intuitive direction concepts of humans. Cognitively adequate formal models of spatial relations are important for information retrieval tasks, cognitive robotics, and multiple spatial reasoning applications. We detail two experiments using two objects (airplanes) systematically located in relation to each other. Participants performed a grouping task to make their intuitive direction concepts explicit. The results reveal an important, so far insufficiently discussed aspect of cognitive direction concepts: Intuitive (natural) direction concepts do not follow a one-size-fits-all strategy. The behavioral data only forms a clear picture after participants' competing strategies are identified and separated into categories (groups) themselves. The results are important for researchers and designers of spatial formalisms as they demonstrate that modeling cognitive direction concepts formally requires a flexible approach to capture group differences
    • …
    corecore