2,612 research outputs found

    How do we remember the past in randomised strategies?

    Full text link
    Graph games of infinite length are a natural model for open reactive processes: one player represents the controller, trying to ensure a given specification, and the other represents a hostile environment. The evolution of the system depends on the decisions of both players, supplemented by chance. In this work, we focus on the notion of randomised strategy. More specifically, we show that three natural definitions may lead to very different results: in the most general cases, an almost-surely winning situation may become almost-surely losing if the player is only allowed to use a weaker notion of strategy. In more reasonable settings, translations exist, but they require infinite memory, even in simple cases. Finally, some traditional problems becomes undecidable for the strongest type of strategies

    Qualitative Analysis of Partially-observable Markov Decision Processes

    Get PDF
    We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based strategy to achieve the objective with probability~1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis of POMDP s with parity objectives (a canonical form to express omega-regular objectives) and its subclasses. Our contribution consists in establishing several upper and lower bounds that were not known in literature. Second, we present optimal bounds (matching upper and lower bounds) on the memory required by pure and randomized observation-based strategies for the qualitative analysis of POMDP s with parity objectives and its subclasses

    Probabilistic modal {\mu}-calculus with independent product

    Full text link
    The probabilistic modal {\mu}-calculus is a fixed-point logic designed for expressing properties of probabilistic labeled transition systems (PLTS's). Two equivalent semantics have been studied for this logic, both assigning to each state a value in the interval [0,1] representing the probability that the property expressed by the formula holds at the state. One semantics is denotational and the other is a game semantics, specified in terms of two-player stochastic parity games. A shortcoming of the probabilistic modal {\mu}-calculus is the lack of expressiveness required to encode other important temporal logics for PLTS's such as Probabilistic Computation Tree Logic (PCTL). To address this limitation we extend the logic with a new pair of operators: independent product and coproduct. The resulting logic, called probabilistic modal {\mu}-calculus with independent product, can encode many properties of interest and subsumes the qualitative fragment of PCTL. The main contribution of this paper is the definition of an appropriate game semantics for this extended probabilistic {\mu}-calculus. This relies on the definition of a new class of games which generalize standard two-player stochastic (parity) games by allowing a play to be split into concurrent subplays, each continuing their evolution independently. Our main technical result is the equivalence of the two semantics. The proof is carried out in ZFC set theory extended with Martin's Axiom at an uncountable cardinal

    Recursive Concurrent Stochastic Games

    Get PDF
    We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent analysis of recursive simple stochastic games to a concurrent setting where the two players choose moves simultaneously and independently at each state. For multi-exit games, our earlier work already showed undecidability for basic questions like termination, thus we focus on the important case of single-exit RCSGs (1-RCSGs). We first characterize the value of a 1-RCSG termination game as the least fixed point solution of a system of nonlinear minimax functional equations, and use it to show PSPACE decidability for the quantitative termination problem. We then give a strategy improvement technique, which we use to show that player 1 (maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM) strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and generalize in a strong sense the randomized memoryless determinacy results for finite stochastic games, and extend the classic Hoffman-Karp strategy improvement approach from the finite to an infinite state setting. The proofs in our infinite-state setting are very different however, relying on subtle analytic properties of certain power series that arise from studying 1-RCSGs. We show that our upper bounds, even for qualitative (probability 1) termination, can not be improved, even to NP, without a major breakthrough, by giving two reductions: first a P-time reduction from the long-standing square-root sum problem to the quantitative termination decision problem for finite concurrent stochastic games, and then a P-time reduction from the latter problem to the qualitative termination problem for 1-RCSGs.Comment: 21 pages, 2 figure

    Games on graphs with a public signal monitoring

    Full text link
    We study pure Nash equilibria in games on graphs with an imperfect monitoring based on a public signal. In such games, deviations and players responsible for those deviations can be hard to detect and track. We propose a generic epistemic game abstraction, which conveniently allows to represent the knowledge of the players about these deviations, and give a characterization of Nash equilibria in terms of winning strategies in the abstraction. We then use the abstraction to develop algorithms for some payoff functions.Comment: 28 page

    Reachability analysis of branching probabilistic processes

    Get PDF
    We study a fundamental class of infinite-state stochastic processes and stochastic games, namely Branching Processes, under the properties of (single-target) reachability and multi-objective reachability. In particular, we study Branching Concurrent Stochastic Games (BCSGs), which are an imperfect-information game extension to the classical Branching Processes, and show that these games are determined, i.e., have a value, under the fundamental objective of reachability, building on and generalizing prior work on Branching Simple Stochastic Games and finite-state Concurrent Stochastic Games. We show that, unlike in the turn-based branching games, in the concurrent setting the almost-sure and limitsure reachability problems do not coincide and we give polynomial time algorithms for deciding both almost-sure and limit-sure reachability. We also provide a discussion on the complexity of quantitative reachability questions for BCSGs. Furthermore, we introduce a new model, namely Ordered Branching Processes (OBPs), which is a hybrid model between classical Branching Processes and Stochastic Context-Free Grammars. Under the reachability objective, this model is equivalent to the classical Branching Processes. We study qualitative multi-objective reachability questions for Ordered Branching Markov Decision Processes (OBMDPs), or equivalently context-free MDPs with simultaneous derivation. We provide algorithmic results for efficiently checking certain Boolean combinations of qualitative reachability and non-reachability queries with respect to different given target non-terminals. Among the more interesting multi-objective reachability results, we provide two separate algorithms for almost-sure and limit-sure multi-target reachability for OBMDPs. Specifically, given an OBMDP, given a starting non-terminal, and given a set of target non-terminals, our first algorithm decides whether the supremum probability, of generating a tree that contains every target non-terminal in the set, is 1. Our second algorithm decides whether there is a strategy for the player to almost-surely (with probability 1) generate a tree that contains every target non-terminal in the set. The two separate algorithms are needed: we show that indeed, in this context, almost-sure and limit-sure multi-target reachability do not coincide. Both algorithms run in time polynomial in the size of the OBMDP and exponential in the number of targets. Hence, they run in polynomial time when the number of targets is fixed. The algorithms are fixed-parameter tractable with respect to this number. Moreover, we show that the qualitative almost-sure (and limit-sure) multi-target reachability decision problem is in general NP-hard, when the size of the set of target non-terminals is not fixed

    Emptiness Of Alternating Tree Automata Using Games With Imperfect Information

    Get PDF
    We consider the emptiness problem for alternating tree automata, with two acceptance semantics: classical (all branches are accepted) and qualitative (almost all branches are accepted). For the classical semantics, the usual technique to tackle this problem relies on a Simulation Theorem which constructs an equivalent non-deterministic automaton from the original alternating one, and then checks emptiness by a reduction to a two-player perfect information game. However, for the qualitative semantics, no simulation of alternation by means of non-determinism is known. We give an alternative technique to decide the emptiness problem of alternating tree automata, that does not rely on a Simulation Theorem. Indeed, we directly reduce the emptiness problem to solving an imperfect information two-player parity game. Our new approach can successfully be applied to both semantics, and yields decidability results with optimal complexity; for the qualitative semantics, the key ingredient in the proof is a positionality result for stochastic games played over infinite graphs

    Distributed stochastic optimization via matrix exponential learning

    Get PDF
    In this paper, we investigate a distributed learning scheme for a broad class of stochastic optimization problems and games that arise in signal processing and wireless communications. The proposed algorithm relies on the method of matrix exponential learning (MXL) and only requires locally computable gradient observations that are possibly imperfect and/or obsolete. To analyze it, we introduce the notion of a stable Nash equilibrium and we show that the algorithm is globally convergent to such equilibria - or locally convergent when an equilibrium is only locally stable. We also derive an explicit linear bound for the algorithm's convergence speed, which remains valid under measurement errors and uncertainty of arbitrarily high variance. To validate our theoretical analysis, we test the algorithm in realistic multi-carrier/multiple-antenna wireless scenarios where several users seek to maximize their energy efficiency. Our results show that learning allows users to attain a net increase between 100% and 500% in energy efficiency, even under very high uncertainty.Comment: 31 pages, 3 figure

    How Good Is a Strategy in a Game with Nature?

    Get PDF
    International audienceWe consider games with two antagonistic players — Éloïse (modelling a program) and Abélard (modelling a byzantine environment) — and a third, unpredictable and uncontrollable player, that we call Nature. Motivated by the fact that the usual probabilistic semantics very quickly leads to undecidability when considering either infinite game graphs or imperfect information, we propose two alternative semantics that leads to decidability where the probabilistic one fails: one based on counting and one based on topology
    • …
    corecore