2,124 research outputs found

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism

    Get PDF
    Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach

    Get PDF
    Les situations spatio-temporelles dynamiques sont des situations qui Ă©voluent dans l’espace et dans le temps. L’ĂȘtre humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des dĂ©cisions. Ces configurations de situations peuvent aussi ĂȘtre appelĂ©es « situations d’intĂ©rĂȘt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systĂšmes d’acquisition de donnĂ©es souvent prĂ©sents dans diverses industries grĂące aux rĂ©cents dĂ©veloppements technologiques et qui gĂ©nĂšrent des bases de donnĂ©es de plus en plus volumineuses. On relĂšve un problĂšme important dans la littĂ©rature liĂ© au fait que les formalismes de reprĂ©sentation utilisĂ©s sont souvent incapables de reprĂ©senter des phĂ©nomĂšnes spatiotemporels dynamiques et complexes qui reflĂštent la rĂ©alitĂ©. De plus, ils ne prennent pas en considĂ©ration l’apprĂ©hension cognitive (modĂšle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en Ɠuvre de tels modĂšles par des agents logiciels. Dans cette thĂšse, nous proposons un nouveau modĂšle de reprĂ©sentation des situations d’intĂ©rĂȘt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modĂšle de reprĂ©sentation. Le modĂšle se base sur les notions d’évĂ©nement et d’état pour reprĂ©senter des phĂ©nomĂšnes spatiotemporels dynamiques. Il intĂšgre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons dĂ©tectĂ©s. Nous proposons aussi un outil de gĂ©nĂ©ration automatisĂ©e des relations qualitatives de proximitĂ© spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intĂ©gration de notre modĂšle dans des applications industrielles rĂ©elles. Ainsi, les contributions principales de notre travail sont : Un formalisme de reprĂ©sentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la dĂ©finition des patrons spatio-temporels basĂ©e sur l’intĂ©gration de l’information contextuelle. ; Un outil de gĂ©nĂ©ration automatique des relations spatiales qualitatives de proximitĂ© basĂ© sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de dĂ©tection des patrons spatiotemporels basĂ©e sur l’extension d’un moteur de traitement des Ă©vĂ©nements complexes (Complex Event Processing).Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    Integrated plan generation and recognition : a logic-based approach

    Get PDF
    The work we present in this paper is settled within the field of intelligent help systems. Intelligent help systems aim at supporting users of application systems by the achievements of qualified experts. In order to provide such qualified support our approach is based on the integration of plan generation and plan recognition components. Plan recognition in this context serves to identify the users goals and so forms the basis for an active user support. The planning component dynamically generates plans which are proposed for the user to reach her goal. We introduce a logic-based approach where plan generation and plan recognition is done on a common logical basis and both components work in some kind of cross-talk

    Non classical concept representation and reasoning in formal ontologies

    Get PDF
    Formal ontologies are nowadays widely considered a standard tool for knowledge representation and reasoning in the Semantic Web. In this context, they are expected to play an important role in helping automated processes to access information. Namely: they are expected to provide a formal structure able to explicate the relationships between different concepts/terms, thus allowing intelligent agents to interpret, correctly, the semantics of the web resources improving the performances of the search technologies. Here we take into account a problem regarding Knowledge Representation in general, and ontology based representations in particular; namely: the fact that knowledge modeling seems to be constrained between conflicting requirements, such as compositionality, on the one hand and the need to represent prototypical information on the other. In particular, most common sense concepts seem not to be captured by the stringent semantics expressed by such formalisms as, for example, Description Logics (which are the formalisms on which the ontology languages have been built). The aim of this work is to analyse this problem, suggesting a possible solution suitable for formal ontologies and semantic web representations. The questions guiding this research, in fact, have been: is it possible to provide a formal representational framework which, for the same concept, combines both the classical modelling view (accounting for compositional information) and defeasible, prototypical knowledge ? Is it possible to propose a modelling architecture able to provide different type of reasoning (e.g. classical deductive reasoning for the compositional component and a non monotonic reasoning for the prototypical one)? We suggest a possible answer to these questions proposing a modelling framework able to represent, within the semantic web languages, a multilevel representation of conceptual information, integrating both classical and non classical (typicality based) information. Within this framework we hypothesise, at least in principle, the coexistence of multiple reasoning processes involving the different levels of representation
    • 

    corecore