13 research outputs found

    Methods for Automated Creation and Efficient Visualisation of Large-Scale Terrains based on Real Height-Map Data

    Get PDF
    Real-time rendering of large-scale terrains is a difficult problem and remains an active field of research. The massive scale of these landscapes, where the ratio between the size of the terrain and its resolution is spanning multiple orders of magnitude, requires an efficient level of detail strategy. It is crucial that the geometry, as well as the terrain data, are represented seamlessly at varying distances while maintaining a constant visual quality. This thesis investigates common techniques and previous solutions to problems associated with the rendering of height field terrains and discusses their benefits and drawbacks. Subsequently, two solutions to the stated problems are presented, which build and expand upon the state-of-the-art rendering methods. A seamless and efficient mesh representation is achieved by the novel Uniform Distance-Dependent Level of Detail (UDLOD) triangulation method. This fully GPU-based algorithm subdivides a quadtree covering the terrain into small tiles, which can be culled in parallel, and are morphed seamlessly in the vertex shader, resulting in a densely and temporally consistent triangulated mesh. The proposed Chunked Clipmap combines the strengths of both quadtrees and clipmaps to enable efficient out-of-core paging of terrain data. This data structure allows for constant time view-dependent access, graceful degradation if data is unavailable, and supports trilinear and anisotropic filtering. Together these, otherwise independent, techniques enable the rendering of large-scale real-world terrains, which is demonstrated on a dataset encompassing the entire Free State of Saxony at a resolution of one meter, in real-time

    A Hybrid client-server based technique for navigation in large terrains using mobile devices

    Get PDF
    We describe a hybrid client-server technique for remote adaptive streaming and rendering of large terrains in resource-limited mobile devices. The technique has been designed to achieve an interactive rendering performance on a mobile device connected to a low-bandwidth wireless network. The rendering workload is split between the client and the server. The terrain area close to the viewer is rendered in real-time by the client using a hierarchical multiresolution scheme. The terrain located far from the viewer is portrayed as view-dependent impostors, rendered by the server on demand and, then sent to the client. The hybrid technique provides tools to dynamically balance the rendering workload according to the resources available at the client side and to the saturation of the network and server. A prototype has been built and an exhaustive set of experiments covering several platforms, wireless networks and a wide range of viewer velocities has been conducted. Results show that the approach is feasible, effective and robust.Postprint (published version

    Storage free terrain simulation

    Get PDF
    Landscape visualisation is the process of recreating a natural environment and displaying it in an interactive graphical simulation. To do this a terrain is displayed together with accompanying plant life and other objects. Present landscape visualisation software is capable in theory of displaying very detailed and large landscapes. The software is also in theory capable of simulating environments with thousands if not millions of individually structured plants. In practice though, the simulation of such landscapes requires such a large amount of storage space that it is not achievable on personal computers. Even storing small landscapes with a moderate amount plant life can be a major development problem. The extent of this problem is such that modem simulators almost always exhibit the following limitations. • When detailed landscapes are stored to the hard disk, the area of terrain covered is usually very small. • When large terrains are stored to the hard disk the detail used is usually low. • When detailed plants are used in a landscape only twenty or so plants are created and used over and over again in the landscape. This work is an original approach to solving the storage space problem that involves not storing any landscape data to the hard disk at all. In this solution, instead of the landscape simulator displaying a landscape that is stored on a hard disk, the landscape simulator displays a landscape that is randomly generated. The landscape is produced on a need-to know basis, the only landscape that exists in the simulator is the landscape that the user of the simulator can see. If the user\u27s position in the landscape alters then the newly visible areas of landscape are created, and the areas no longer visible are removed from the simulator entirely. Areas of landscape being visited for a second time are always re-created the same way as they were originally created

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces

    Real-time simulation and visualization of deformations on heightfields

    Get PDF
    Ankara : The Department of Computer Engineering and The Institute of Engineering and Science of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 117-121.The applications of computer graphics raise new expectations, such as realistic rendering, real-time dynamic scenes and physically correct simulations. The aim of this thesis is to investigate these problems on the height eld structure, an extended 2D model that can be processed e ciently by data-parallel architectures. This thesis presents methods for simulation of deformations on height eld as caused by triangular objects, physical simulation of objects interacting with height eld and advanced visualization of deformations. The height eld is stored in two di erent resolutions to support fast rendering and precise physical simulations as required. The methods are implemented as part of a large-scale height- eld management system, which applies additional level of detail and culling optimizations for the proposed methods and data structures. The solutions provide real-time interaction and recent graphics hardware (GPU) capabilities are utilized to achieve real-time results. All the methods described in this thesis are demonstrated by a sample application and performance characteristics and results are presented to support the conclusions.Yalçın, M AdilM.S

    3D Spatial Data Infrastructures for web-based Visualization

    Get PDF
    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as enabling technology for sharing, distributing, and connecting geospatial data and services. The Open Geospatial Consortium is the main driver for developing international standards in this sector and includes government agencies, universities and private companies in a consensus process. 3D city models are becoming increasingly popular not only in desktop Virtual Reality applications but also for being used in professional purposes by public authorities. Spatial Data Infrastructures focus so far on the storage and exchange of 3D building and elevation data. For efficient streaming and visualization of spatial 3D data in distributed network environments such as the internet, concepts from the area of real time 3D Computer Graphics must be applied and combined with Geographic Information Systems (GIS). For example, scene graph data structures are commonly used for creating complex and dynamic 3D environments for computer games and Virtual Reality applications, but have not been introduced in GIS so far. In this thesis, several aspects of how to create interoperable and service-based environments for 3D spatial data are addressed. These aspects are covered by publications in journals and conference proceedings. The introductory chapter provides a logic succession from geometrical operations for processing raw data, to data integration patterns, to system designs of single components, to service interface descriptions and workflows, and finally to an architecture of a complete distributed service network. Digital Elevation Models are very important in 3D geo-visualization systems. Data structures, methods and processes are described for making them available in service based infrastructures. A specific mesh reduction method is used for generating lower levels of detail from very large point data sets. An integration technique is presented that allows the combination with 2D GIS data such as roads and land use areas. This approach allows using another optimization technique that greatly improves the usability for immersive 3D applications such as pedestrian navigation: flattening road and water surfaces. It is a geometric operation, which uses data structures and algorithms found in numerical simulation software implementing Finite Element Methods. 3D Routing is presented as a typical application scenario for detailed 3D city models. Specific problems such as bridges, overpasses and multilevel networks are addressed and possible solutions described. The integration of routing capabilities in service infrastructures can be accomplished with standards of the Open Geospatial Consortium. An additional service is described for creating 3D networks and for generating 3D routes on the fly. Visualization of indoor routes requires different representation techniques. As server interface for providing access to all 3D data, the Web 3D Service has been used and further developed. Integrating and handling scene graph data is described in order to create rich virtual environments. Coordinate transformations of scene graphs are described in detail, which is an important aspect for ensuring interoperability between systems using different spatial reference systems. The Web 3D Service plays a central part in nearly all experiments that have been carried out. It does not only provide the means for interactive web-visualizations, but also for performing further analyses, accessing detailed feature information, and for automatic content discovery. OpenStreetMap and other worldwide available datasets are used for developing a complete architecture demonstrating the scalability of 3D Spatial Data Infrastructures. Its suitability for creating 3D city models is analyzed, according to requirements set by international standards. A full virtual globe system has been developed based on OpenStreetMap including data processing, database storage, web streaming and a visualization client. Results are discussed and compared to similar approaches within geo-informatics research, clarifying in which application scenarios and under which requirements the approaches in this thesis can be applied

    Granite: A scientific database model and implementation

    Get PDF
    The principal goal of this research was to develop a formal comprehensive model for representing highly complex scientific data. An effective model should provide a conceptually uniform way to represent data and it should serve as a framework for the implementation of an efficient and easy-to-use software environment that implements the model. The dissertation work presented here describes such a model and its contributions to the field of scientific databases. In particular, the Granite model encompasses a wide variety of datatypes used across many disciplines of science and engineering today. It is unique in that it defines dataset geometry and topology as separate conceptual components of a scientific dataset. We provide a novel classification of geometries and topologies that has important practical implications for a scientific database implementation. The Granite model also offers integrated support for multiresolution and adaptive resolution data. Many of these ideas have been addressed by others, but no one has tried to bring them all together in a single comprehensive model. The datasource portion of the Granite model offers several further contributions. In addition to providing a convenient conceptual view of rectilinear data, it also supports multisource data. Data can be taken from various sources and combined into a unified view. The rod storage model is an abstraction for file storage that has proven an effective platform upon which to develop efficient access to storage. Our spatial prefetching technique is built upon the rod storage model, and demonstrates very significant improvement in access to scientific datasets, and also allows machines to access data that is far too large to fit in main memory. These improvements bring the extremely large datasets now being generated in many scientific fields into the realm of tractability for the ordinary researcher. We validated the feasibility and viability of the model by implementing a significant portion of it in the Granite system. Extensive performance evaluations of the implementation indicate that the features of the model can be provided in a user-friendly manner with an efficiency that is competitive with more ad hoc systems and more specialized application specific solutions

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore