10,679 research outputs found

    Radial Velocity Studies of Close Binary Stars. XI

    Get PDF
    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: DU Boo, ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi and AG Vir. By this contribution, the DDO program has reached the point of 100 published radial velocity orbits. The radial velocities have been determined using an improved fitting technique which uses rotational profiles to approximate individual peaks in broadening functions. Three systems, ET Boo, VW LMi and TV UMi, were found to be quadruple while AG Vir appears to be a spectroscopic triple. ET Boo, a member of a close visual binary with Pvis=113P_{vis} = 113 years, was previously known to be a multiple system, but we show that the second component is actually a close, non-eclipsing binary. The new observations enabled us to determine the spectroscopic orbits of the companion, non-eclipsing pairs in ET Boo and VW LMi. The particularly interesting case is VW LMi, where the period of the mutual revolution of the two spectroscopic binaries is only 355 days. While most of the studied eclipsing pairs are contact binaries, ET Boo is composed of two double-lined detached binaries and HL Dra is single-lined detached or semi-detached system. Five systems of this group were observed spectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-lined binary), V566 Oph, AG Vir, but our new data are of much higher quality than the previous studies.Comment: Accepted by AJ, August 2006, 10 figures, 3 table

    Incremental generalized homogeneity, observer design and semiglobal stabilization

    Get PDF
    The notion of incremental generalized homogeneity is introduced, giving new results on semiglobal stabilization by output feedback and observer design and putting into a unifying framework the stabilization design for triangular (feedback/ feedforward) and homogeneous systems. A state feedback controller and an asymptotic state observer are designed separately by dominating the generalized homogeneity degree of the nonlinearities with the degree of the linear approximation of the system and an output feedback controller is obtained according to a certainty-equivalence principle

    Classification of flag-transitive Steiner quadruple systems

    Full text link
    A Steiner quadruple system of order v is a 3-(v,4,1) design, and will be denoted SQS(v). Using the classification of finite 2-transitive permutation groups all SQS(v) with a flag-transitive automorphism group are completely classified, thus solving the "still open and longstanding problem of classifying all flag-transitive 3-(v,k,1) designs" for the smallest value of k. Moreover, a generalization of a result of H. Lueneburg (1965, Math. Z. 89, 82-90) is achieved.Comment: 11 page

    Constructing Optimal Authentication Codes with Perfect Multi-fold Secrecy

    Full text link
    We establish a construction of optimal authentication codes achieving perfect multi-fold secrecy by means of combinatorial designs. This continues the author's work (ISIT 2009) and answers an open question posed therein. As an application, we present the first infinite class of optimal codes that provide two-fold security against spoofing attacks and at the same time perfect two- fold secrecy.Comment: 4 pages (double-column); to appear in Proc. 2010 International Zurich Seminar on Communications (IZS 2010, Zurich

    Magnetism and unusual Cu valency in quadruple perovskites

    Full text link
    We study a selection of Cu-containing magnetic quadruple perovskites (CaCu3_{3}Ti4_{4}O12_{12}, LaCu3_{3}Fe4_{4}O12_{12}, and YCu3_{3}Co4_{4}O12_{12}) by ab initio calculations, and show that Cu is in an effective divalent Cu(II)-like state or a trivalent Cu(III) state depending on the choice of octahedral cation. Based on the electronic structure, we also discuss the role of Mott and Zhang-Rice physics in this materials class.Comment: 5 pages, 4 figure

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    The High-Order-Multiplicity of Unusually Wide M-dwarf Binaries: Eleven New Triple and Quadruple Systems

    Full text link
    M-dwarfs in extremely wide binary systems are very rare, and may thus have different formation processes from those found as single stars or close binaries in the field. In this paper we search for close companions to a new sample of 36 extremely wide M-dwarf binaries, covering a spectral type range of M1 to M5 and a separation range of 600 - 6500 AU. We discover 10 new triple systems and one new quadruple system. We carefully account for selection effects including proper motion, magnitude limits, the detection of close binaries in the SDSS, and other sample biases. The bias-corrected total high-order-multiple fraction is 45% (+18%/-16%) and the bias-corrected incidence of quadruple systems is < 5%, both statistically compatible with that found for the more common close M-dwarf multiple systems. Almost all the detected companions have similar masses to their primaries, although two very low mass companions, including a candidate brown dwarf, are found at relatively large separations. We find that the close-binary separation distribution is strongly peaked towards < 30AU separations. There is marginally significant evidence for a change in high-order M-dwarf multiplicity with binding energy and total mass. We also find 2-sigma evidence of an unexpected increased high-order-multiple fraction for the widest targets in our survey, with a high-order-multiple fraction of 21% (+17%/-7%) for systems with separations up to 2000AU, compared to 77% (+9%/-22%) for systems with separations > 4000AU. These results suggest that the very widest M-dwarf binary systems need higher masses to form or to survive.Comment: 11 pages, 14 figures, accepted for publication in Ap

    Conway groupoids, regular two-graphs and supersimple designs

    Get PDF
    A 2−(n,4,λ)2-(n,4,\lambda) design (Ω,B)(\Omega, \mathcal{B}) is said to be supersimple if distinct lines intersect in at most two points. From such a design, one can construct a certain subset of Sym(Ω)(\Omega) called a "Conway groupoid". The construction generalizes Conway's construction of the groupoid M13M_{13}. It turns out that several infinite families of groupoids arise in this way, some associated with 3-transposition groups, which have two additional properties. Firstly the set of collinear point-triples forms a regular two-graph, and secondly the symmetric difference of two intersecting lines is again a line. In this paper, we show each of these properties corresponds to a group-theoretic property on the groupoid and we classify the Conway groupoids and the supersimple designs for which both of these two additional properties hold.Comment: 17 page

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure
    • …
    corecore