249 research outputs found

    Keep Rollin' - Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots

    Full text link
    We show dynamic locomotion strategies for wheeled quadrupedal robots, which combine the advantages of both walking and driving. The developed optimization framework tightly integrates the additional degrees of freedom introduced by the wheels. Our approach relies on a zero-moment point based motion optimization which continuously updates reference trajectories. The reference motions are tracked by a hierarchical whole-body controller which computes optimal generalized accelerations and contact forces by solving a sequence of prioritized tasks including the nonholonomic rolling constraints. Our approach has been tested on ANYmal, a quadrupedal robot that is fully torque-controlled including the non-steerable wheels attached to its legs. We conducted experiments on flat and inclined terrains as well as over steps, whereby we show that integrating the wheels into the motion control and planning framework results in intuitive motion trajectories, which enable more robust and dynamic locomotion compared to other wheeled-legged robots. Moreover, with a speed of 4 m/s and a reduction of the cost of transport by 83 % we prove the superiority of wheeled-legged robots compared to their legged counterparts.Comment: IEEE Robotics and Automation Letter

    PM-FSM: Policies Modulating Finite State Machine for Robust Quadrupedal Locomotion

    Full text link
    Deep reinforcement learning (deep RL) has emerged as an effective tool for developing controllers for legged robots. However, vanilla deep RL often requires a tremendous amount of training samples and is not feasible for achieving robust behaviors. Instead, researchers have investigated a novel policy architecture by incorporating human experts' knowledge, such as Policies Modulating Trajectory Generators (PMTG). This architecture builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors. To take advantage of human experts' knowledge but eliminate time-consuming interactive teaching, researchers have investigated a novel architecture, Policies Modulating Trajectory Generators (PMTG), which builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors using intuitive prior knowledge. In this work, we propose Policies Modulating Finite State Machine (PM-FSM) by replacing TGs with contact-aware finite state machines (FSM), which offer more flexible control of each leg. Compared with the TGs, FSMs offer high-level management on each leg motion generator and enable a flexible state arrangement, which makes the learned behavior less vulnerable to unseen perturbations or challenging terrains. This invention offers an explicit notion of contact events to the policy to negotiate unexpected perturbations. We demonstrated that the proposed architecture could achieve more robust behaviors in various scenarios, such as challenging terrains or external perturbations, on both simulated and real robots. The supplemental video can be found at: https://youtu.be/78cboMqTkJQ

    LeggedWalking on Inclined Surfaces

    Full text link
    The main contribution of this MS Thesis is centered around taking steps towards successful multi-modal demonstrations using Northeastern's legged-aerial robot, Husky Carbon. This work discusses the challenges involved in achieving multi-modal locomotion such as trotting-hovering and thruster-assisted incline walking and reports progress made towards overcoming these challenges. Animals like birds use a combination of legged and aerial mobility, as seen in Chukars' wing-assisted incline running (WAIR), to achieve multi-modal locomotion. Chukars use forces generated by their flapping wings to manipulate ground contact forces and traverse steep slopes and overhangs. Husky's design takes inspiration from birds such as Chukars. This MS thesis presentation outlines the mechanical and electrical details of Husky's legged and aerial units. The thesis presents simulated incline walking using a high-fidelity model of the Husky Carbon over steep slopes of up to 45 degrees.Comment: Masters thesi

    Excitation and Stabilization of Passive Dynamics in Locomotion using Hierarchical Operational Space Control

    Get PDF
    This paper describes a hierarchical operational space control (OSC) method based on least square optimization and outlines different ways to reduce the dimensionality of the optimization vector. The framework allows to emulate various behaviors by prioritized task-space motion, joint torque, and contact force optimization. Moreover, a methodology is introduced to partially excite the natural dynamics of the robot by open-loop motor regulation while the entire behavior is stabilized by hierarchical OSC. As a major contribution, the presented control strategies are tested and validated in real hardware walking, trotting, and pronking experiments using a fully torque controllable quadrupedal robot

    Robust Whole-Body Motion Control of Legged Robots

    Full text link
    We introduce a robust control architecture for the whole-body motion control of torque controlled robots with arms and legs. The method is based on the robust control of contact forces in order to track a planned Center of Mass trajectory. Its appeal lies in the ability to guarantee robust stability and performance despite rigid body model mismatch, actuator dynamics, delays, contact surface stiffness, and unobserved ground profiles. Furthermore, we introduce a task space decomposition approach which removes the coupling effects between contact force controller and the other non-contact controllers. Finally, we verify our control performance on a quadruped robot and compare its performance to a standard inverse dynamics approach on hardware.Comment: 8 Page
    • …
    corecore