65 research outputs found

    Ternary and quadriphase sequence diffusers

    Get PDF
    A room acoustic diffuser breaks up reflected wavefronts, and this can be achieved by presenting a spatially varying surface impedance. In hybrid surfaces, varying impedance is achieved by patches of absorption and reflection, giving reflection coefficients nominally of 0 and 1. These surfaces are hybrids, absorbing some of the incident sound while diffusing any reflected energy. A problem with planar hybrid surfaces is that specular energy is only removed by absorption. By exploiting interference, by reflecting waves out-of-phase with the specular energy, it is possible to diminish the specular energy further. This can be achieved by using a diffuser based on a ternary sequence that nominally has reflection coefficients of 0, -1, and +1. Ternary sequences are therefore a way of forming hybrid absorber-diffusers that achieve better scattering performance without additional absorption. This paper discusses methods for making ternary sequence diffusers, including giving sequence generation methods. It presents prediction results based on Fourier and boundary element method models to examine the performance. While ternary diffusers have better performance than unipolar binary diffusers at most frequencies, there are frequencies at which the performances are the same. This can be overcome by forming diffusers from four-level, quadriphase sequences

    A linear construction for certain Kerdock and Preparata codes

    Full text link
    The Nordstrom-Robinson, Kerdock, and (slightly modified) Pre\- parata codes are shown to be linear over \ZZ_4, the integers  mod  4\bmod~4. The Kerdock and Preparata codes are duals over \ZZ_4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over \ZZ_4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over \ZZ_4, but Hamming codes in general are not, nor is the Golay code.Comment: 5 page

    TDRSS telecommunications system, PN code analysis

    Get PDF
    The pseudo noise (PN) codes required to support the TDRSS telecommunications services are analyzed and the impact of alternate coding techniques on the user transponder equipment, the TDRSS equipment, and all factors that contribute to the acquisition and performance of these telecommunication services is assessed. Possible alternatives to the currently proposed hybrid FH/direct sequence acquisition procedures are considered and compared relative to acquisition time, implementation complexity, operational reliability, and cost. The hybrid FH/direct sequence technique is analyzed and rejected in favor of a recommended approach which minimizes acquisition time and user transponder complexity while maximizing probability of acquisition and overall link reliability

    Integrated source and channel encoded digital communication system design study

    Get PDF
    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop

    PULSE COMPRESSION IN SEARCH RADAR

    Get PDF
    Pulse compression is a vvidely used method to maintain the range resolution ot radar while increasing the average power per pulse that can be placed on a target. Using all these methods a wideband modulation is added to the transmitted pulse and a filter matched to this modulation is used in the receiver. There are several kinds of these additional modulations, and each has different properties, therefore simulation of these methods is essential during design of modulation. In this article an overview of pulse compression techniques is given, the benefits and disadvantages of these methods are discussed. Biphase coded systems are detailed, because they are easy to implement with digital hardware. At the end, our simulation hardware and software tools are described, giving some illustrations from the results
    • …
    corecore