1,959 research outputs found

    Dual-Polarization OFDM-OQAM Wireless Communication System

    Full text link
    In this paper we describe the overall idea and results of a recently proposed radio access technique based on filter bank multicarrier (FBMC) communication system using two orthogonal polarizations: dual-polarization FBMC (DP-FBMC). Using this system we can alleviate the intrinsic interference problem in FBMC systems. This enables use of all the multicarrier techniques used in cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) systems for channel equalization, multiple-input/multiple-output (MIMO) processing, etc., without using the extra processing required for conventional FBMC. DP-FBMC also provides other interesting advantages over CP-OFDM and FBMC such as more robustness in multipath fading channels, and more robustness to receiver carrier frequency offset (CFO) and timing offset (TO). For DP-FBMC we propose three different structures based on different multiplexing techniques in time, frequency, and polarization. We will show that one of these structures has exactly the same system complexity and equipment as conventional FBMC. In our simulation results DP-FBMC has better bit error ratio (BER) performance in dispersive channels. Based on these results, DP-FBMC has potential as a promising candidate for future wireless communication systems.Comment: 1.This paper is accepted to be published in IEEE Vehicular Technology Conference (VTC) FALL 2018. 2.In this new submitted version authors have revised the paper based on the VTC FALL reviewers comments. Therefore some typos have fixed and some results have change

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    Performance and Compensation of I/Q Imbalance in Differential STBC-OFDM

    Full text link
    Differential space time block coding (STBC) achieves full spatial diversity and avoids channel estimation overhead. Over highly frequency-selective channels, STBC is integrated with orthogonal frequency division multiplexing (OFDM) to achieve high performance. However, low-cost implementation of differential STBC-OFDM using direct-conversion transceivers is sensitive to In-phase/Quadrature-phase imbalance (IQI). In this paper, we quantify the performance impact of IQI at the receiver front-end on differential STBC-OFDM systems and propose a compensation algorithm to mitigate its effect. The proposed receiver IQI compensation works in an adaptive decision-directed manner without using known pilots or training sequences, which reduces the rate loss due to training overhead. Our numerical results show that our proposed compensation algorithm can effectively mitigate receive IQI in differential STBC-OFDM.Comment: 7 pages, 2 figures, IEEE GLOBECOM 201

    Performance analysis and optimization of DCT-based multicarrier system on frequency-selective fading channels

    Get PDF
    Regarded as one of the most promising transmission techniques for future wireless communications, the discrete cosine transform (DCT) based multicarrier modulation (MCM) system employs cosine basis as orthogonal functions for real-modulated symbols multiplexing, by which the minimum orthogonal frequency spacing can be reduced by half compared to discrete Fourier transform (DFT) based one. With a time-reversed pre-filter employed at the front of the receiver, interference-free one-tap equalization is achievable for the DCT-based systems. However, due to the correlated pre-filtering operation in time domain, the signal-to-noise ratio (SNR) is enhanced as a result at the output. This leads to reformulated detection criterion to compensate for such filtering effect, rendering minimum-mean-square-error (MMSE) and maximum likelihood (ML) detections applicable to the DCT-based multicarrier system. In this paper, following on the pre-filtering based DCT-MCM model that build in the literature work, we extend the overall system by considering both transceiver perfections and imperfections, where frequency offset, time offset and insufficient guard sequence are included. In the presence of those imperfection errors, the DCT-MCM systems are analysed in terms of desired signal power, inter-carrier interference (ICI) and inter-symbol interference (ISI). Thereafter, new detection algorithms based on zero forcing (ZF) iterative results are proposed to mitigate the imperfection effect. Numerical results show that the theoretical analysis match the simulation results, and the proposed iterative detection algorithms are able to improve the overall system performance significantly

    A time-domain control signal detection technique for OFDM

    Get PDF
    Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset

    Single-RF spatial modulation requires single-carrier transmission: frequency-domain turbo equalization for dispersive channels

    No full text
    In this paper, we propose a broadband single-carrier (SC) spatial-modulation (SM) based multiple-input multipleoutput (MIMO) architecture relying on a soft-decision (SoD) frequency-domain equalization (FDE) receiver. We demonstrate that conventional orthogonal frequency-division multiplexing (OFDM)-based broadband transmissions are not readily suitable for the single–radio frequency (RF) assisted SM-MIMO schemes, since this scheme does not exhibit any substantial performance advantage over single-antenna transmissions. To circumvent this limitation, a low-complexity soft-decision (SoD) FDE algorithm based on the minimum mean-square error (MMSE) criterion is invoked for our broadband SC-based SM-MIMO scheme, which is capable of operating in a strongly dispersive channel having a long channel impulse response (CIR) at a moderate decoding complexity. Furthermore, our SoD FDE attains a near-capacity performance with the aid of a three-stage concatenated SC-based SM architecture

    Efficient implementation of filter bank multicarrier systems using circular fast convolution

    Get PDF
    In this paper, filter bank-based multicarrier systems using a fast convolution approach are investigated. We show that exploiting offset quadrature amplitude modulation enables us to perform FFT/IFFT-based convolution without overlapped processing, and the circular distortion can be discarded as a part of orthogonal interference terms. This property has two advantages. First, it leads to spectral efficiency enhancement in the system by removing the prototype filter transients. Second, the complexity of the system is significantly reduced as the result of using efficient FFT algorithms for convolution. The new scheme is compared with the conventional waveforms in terms of out-of-band radiation, orthogonality, spectral efficiency, and complexity. The performance of the receiver and the equalization methods are investigated and compared with other waveforms through simulations. Moreover, based on the time variant nature of the filter response of the proposed scheme, a pilot-based channel estimation technique with controlled transmit power is developed and analyzed through lower-bound derivations. The proposed transceiver is shown to be a competitive solution for future wireless networks

    Theoretical and experimental design of an alternative system to 2 x 2 MIMO for LTE over 60 km directly modulated RoF link

    Get PDF
    Relay nodes (RN) are used as an important structure to extend the coverage of the Third Generation Partnership Program’s Long Term Evolution (3GPP-LTE). The promising technology as the interface between eNodeB (eNB) and RN is radio-over-fibre (RoF), due to its longer span transmission capability. In this paper, we propose an alternative technique to 2×2 multiple-input and multiple-output (MIMO) in LTE structure for transmission over 60 km directly modulated RoF link by introducing frequency division multiplexing (FDM) for orthogonal FDM (OFDM). The system is demonstrated theoretically and experimentally. In the baseband, quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (QAM) and 64-QAM are considered as the single carrier modulations (SCM) according to the LTE standard. The system degradation pattern is identical between the theoretical and experimental system, thus proving the accuracy of the theoretical system design. The real time QPSK, 16-QAM and 64-QAM system achieved an average EVM of 5.84%, 5.90% and 5.97%, respectively for 2 GHz and 2.6 GHz bands. These resultant EVMs are below the 8% 3GPP-LTE EVM requirement
    corecore