621 research outputs found

    Quadrature Spatial Modulation Orthogonal Frequency Division Multiplexing

    Get PDF
    This paper investigates the application of quadrature spatial modulation (QSM) to orthogonal frequency division multiplexing (OFDM). In comparison to spatial modulation OFDM (SM-OFDM), the proposed QSM-OFDM achieves an enhanced spectral efficiency by decomposing the amplitude and/or phase modulated signal into its real and imaginary components as the transmitted symbols. The index/indices of the activated transmit antenna(s) are employed to convey additional information. These symbols are transmitted orthogonally to eliminate inter-channel interference with little trade-off in synchronization. The average bit error probability for QSM-OFDM and other schemes, including the SM-OFDM, conventional multiple-input multiple-output (MIMO-OFDM), maximal-ratio combining single-input multiple-output (MRC-OFDM), vertical Bell Laboratories layered space-time architecture (VBLAST-OFDM) and Alamouti-OFDM systems are demonstrated using Monte Carlo simulation. The expressions for the receiver computational complexities in terms of the number of real operations are further derived. QSM-OFDM yields a significant signal-to-noise ratio gain of  dB with little trade-off in computational complexity over SM-OFDM, while substantial gains greater than  dB are evident, when compared to other systems

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    “Multicarrier Modulation for Wireless Communication using Wavelet Packets

    Get PDF
    Success of OFDM has proved that Multi carrier modulation is an efficient solution for wireless communications. Wavelet Packet Modulation (WPM) is a new type of modulation for transmission of multicarrier signal on wireless channel that uses orthogonal wavelet bases other than sine functions. Though this modulation is over all similar to that of OFDM, it provides interesting additional features. In this thesis, a detailed study is given on Wavelets and WPM and the BER performance comparison between the OFDM systems and WPM systems and equalization techniques are analysed. The analysis is done for different types of wavelet generating families, various number of modulations QAM constellation points (16 to 64), and simulated over AWGN channel, and other Multipath fading channels
    corecore