1,115 research outputs found

    Robust Secure Transmission in MISO Channels Based on Worst-Case Optimization

    Full text link
    This paper studies robust transmission schemes for multiple-input single-output (MISO) wiretap channels. Both the cases of direct transmission and cooperative jamming with a helper are investigated with imperfect channel state information (CSI) for the eavesdropper links. Robust transmit covariance matrices are obtained based on worst-case secrecy rate maximization, under both individual and global power constraints. For the case of an individual power constraint, we show that the non-convex maximin optimization problem can be transformed into a quasiconvex problem that can be efficiently solved with existing methods. For a global power constraint, the joint optimization of the transmit covariance matrices and power allocation between the source and the helper is studied via geometric programming. We also study the robust wiretap transmission problem for the case with a quality-of-service constraint at the legitimate receiver. Numerical results show the advantage of the proposed robust design. In particular, for the global power constraint scenario, although cooperative jamming is not necessary for optimal transmission with perfect eavesdropper's CSI, we show that robust jamming support can increase the worst-case secrecy rate and lower the signal to interference-plus-noise ratio at Eve in the presence of channel mismatches between the transmitters and the eavesdropper.Comment: 28 pages, 5 figure

    Fronthaul Quantization as Artificial Noise for Enhanced Secret Communication in C-RAN

    Full text link
    This work considers the downlink of a cloud radio access network (C-RAN), in which a control unit (CU) encodes confidential messages, each of which is intended for a user equipment (UE) and is to be kept secret from all the other UEs. As per the C-RAN architecture, the encoded baseband signals are quantized and compressed prior to the transfer to distributed radio units (RUs) that are connected to the CU via finite-capacity fronthaul links. This work argues that the quantization noise introduced by fronthaul quantization can be leveraged to act as "artificial" noise in order to enhance the rates achievable under secrecy constraints. To this end, it is proposed to control the statistics of the quantization noise by applying multivariate, or joint, fronthaul quantization/compression at the CU across all outgoing fronthaul links. Assuming wiretap coding, the problem of jointly optimizing the precoding and multivariate compression strategies, along with the covariance matrices of artificial noise signals generated by RUs, is formulated with the goal of maximizing the weighted sum of achievable secrecy rates while satisfying per-RU fronthaul capacity and power constraints. After showing that the artificial noise covariance matrices can be set to zero without loss of optimaliy, an iterative optimization algorithm is derived based on the concave convex procedure (CCCP), and some numerical results are provided to highlight the advantages of leveraging quantization noise as artificial noise.Comment: to appear in Proc. IEEE SPAWC 201

    Spatially Selective Artificial-Noise Aided Transmit Optimization for MISO Multi-Eves Secrecy Rate Maximization

    Full text link
    Consider an MISO channel overheard by multiple eavesdroppers. Our goal is to design an artificial noise (AN)-aided transmit strategy, such that the achievable secrecy rate is maximized subject to the sum power constraint. AN-aided secure transmission has recently been found to be a promising approach for blocking eavesdropping attempts. In many existing studies, the confidential information transmit covariance and the AN covariance are not simultaneously optimized. In particular, for design convenience, it is common to prefix the AN covariance as a specific kind of spatially isotropic covariance. This paper considers joint optimization of the transmit and AN covariances for secrecy rate maximization (SRM), with a design flexibility that the AN can take any spatial pattern. Hence, the proposed design has potential in jamming the eavesdroppers more effectively, based upon the channel state information (CSI). We derive an optimization approach to the SRM problem through both analysis and convex conic optimization machinery. We show that the SRM problem can be recast as a single-variable optimization problem, and that resultant problem can be efficiently handled by solving a sequence of semidefinite programs. Our framework deals with a general setup of multiple multi-antenna eavesdroppers, and can cater for additional constraints arising from specific application scenarios, such as interference temperature constraints in interference networks. We also generalize the framework to an imperfect CSI case where a worst-case robust SRM formulation is considered. A suboptimal but safe solution to the outage-constrained robust SRM design is also investigated. Simulation results show that the proposed AN-aided SRM design yields significant secrecy rate gains over an optimal no-AN design and the isotropic AN design, especially when there are more eavesdroppers.Comment: To appear in IEEE Trans. Signal Process., 201

    The distribution of forces affects vibrational properties in hard sphere glasses

    Full text link
    We study theoretically and numerically the elastic properties of hard sphere glasses, and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero-temperature, we argue that the presence of certain pairs of particles interacting with a small force ff soften elastic properties. This softening affects the exponents characterizing elasticity at high pressure, leading to experimentally testable predictions. Denoting P(f)∼fθeP(f)\sim f^{\theta_e} the force distribution of such pairs and ϕc\phi_c the packing fraction at which pressure diverges, we predict that (i) the density of states has a low-frequency peak at a scale ω∗\omega^*, rising up to it as D(ω)∼ω2+aD(\omega) \sim \omega^{2+a}, and decaying above ω∗\omega^* as D(ω)∼ω−aD(\omega)\sim \omega^{-a} where a=(1−θe)/(3+θe)a=(1-\theta_e)/(3+\theta_e) and ω\omega is the frequency, (ii) shear modulus and mean-squared displacement are inversely proportional with ⟨δR2⟩∼1/μ∼(ϕc−ϕ)κ\langle \delta R^2\rangle\sim1/\mu\sim (\phi_c-\phi)^{\kappa} where κ=2−2/(3+θe)\kappa=2-2/(3+\theta_e), and (iii) continuum elasticity breaks down on a scale ℓc∼1/δz∼(ϕc−ϕ)−b\ell_c \sim1/\sqrt{\delta z}\sim (\phi_c-\phi)^{-b} where b=(1+θe)/(6+2θe)b=(1+\theta_e)/(6+2\theta_e) and δz=z−2d\delta z=z-2d, where zz is the coordination and dd the spatial dimension. We numerically test (i) and provide data supporting that θe≈0.41\theta_e\approx 0.41 in our bi-disperse system, independently of system preparation in two and three dimensions, leading to κ≈1.41\kappa\approx1.41, a≈0.17a \approx 0.17, and b≈0.21b\approx 0.21. Our results for the mean-square displacement are consistent with a recent exact replica computation for d=∞d=\infty, whereas some observations differ, as rationalized by the present approach.Comment: 5 pages + 4 pages supplementary informatio

    Secure wireless powered and cooperative jamming D2D communications

    Get PDF
    This paper investigates a secure wireless-powered device-to-device (D2D) communication network in the presence of multiple eavesdroppers, where a hybrid base station (BS) in a cellular network not only provides power wirelessly for the D2D transmitter to guarantee power efficiency for the D2D network, but also serves as a cooperative jammer (CJ) to interfere with the eavesdroppers. The cellular and D2D networks can belong to different service providers, which means that the D2D transmitter would need to pay for the energy service released by the hybrid BS to guarantee secure D2D communication. In order to exploit the hierarchical interaction between the BS and the D2D transmitter, we first formulate a Stackelberg game based energy trading scheme, where the quadratic energy cost model is considered. Then, a non-energy trading based Stackelberg game is investigated to study the reversed roles of the BS and the D2D users. For comparison, we also formulate and resolve the social welfare optimization problem. We derive the closed-form Stackelberg equilibriums of the formulated games and the optimal solutions for the social welfare optimization problem. Simulation results are provided to validate our proposed schemes to highlight the importance of energy trading interaction between cellular and D2D networks
    • …
    corecore