15,969 research outputs found

    MIMO Networks: the Effects of Interference

    Full text link
    Multiple-input/multiple-output (MIMO) systems promise enormous capacity increase and are being considered as one of the key technologies for future wireless networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is not well understood. In this paper, we develop an analytical framework to characterize the capacity of MIMO communication systems in the presence of multiple MIMO co-channel interferers and noise. We consider the situation in which transmitters have no information about the channel and all links undergo Rayleigh fading. We first generalize the known determinant representation of hypergeometric functions with matrix arguments to the case when the argument matrices have eigenvalues of arbitrary multiplicity. This enables the derivation of the distribution of the eigenvalues of Gaussian quadratic forms and Wishart matrices with arbitrary correlation, with application to both single user and multiuser MIMO systems. In particular, we derive the ergodic mutual information for MIMO systems in the presence of multiple MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of antennas having possibly unequal power levels. This framework, therefore, accommodates the study of distributed MIMO systems and accounts for different positions of the MIMO interferers.Comment: Submitted to IEEE Trans. on Info. Theor

    A Central Limit Theorem for the SINR at the LMMSE Estimator Output for Large Dimensional Signals

    Full text link
    This paper is devoted to the performance study of the Linear Minimum Mean Squared Error estimator for multidimensional signals in the large dimension regime. Such an estimator is frequently encountered in wireless communications and in array processing, and the Signal to Interference and Noise Ratio (SINR) at its output is a popular performance index. The SINR can be modeled as a random quadratic form which can be studied with the help of large random matrix theory, if one assumes that the dimension of the received and transmitted signals go to infinity at the same pace. This paper considers the asymptotic behavior of the SINR for a wide class of multidimensional signal models that includes general multi-antenna as well as spread spectrum transmission models. The expression of the deterministic approximation of the SINR in the large dimension regime is recalled and the SINR fluctuations around this deterministic approximation are studied. These fluctuations are shown to converge in distribution to the Gaussian law in the large dimension regime, and their variance is shown to decrease as the inverse of the signal dimension

    How to Understand LMMSE Transceiver Design for MIMO Systems From Quadratic Matrix Programming

    Full text link
    In this paper, a unified linear minimum mean-square-error (LMMSE) transceiver design framework is investigated, which is suitable for a wide range of wireless systems. The unified design is based on an elegant and powerful mathematical programming technology termed as quadratic matrix programming (QMP). Based on QMP it can be observed that for different wireless systems, there are certain common characteristics which can be exploited to design LMMSE transceivers e.g., the quadratic forms. It is also discovered that evolving from a point-to-point MIMO system to various advanced wireless systems such as multi-cell coordinated systems, multi-user MIMO systems, MIMO cognitive radio systems, amplify-and-forward MIMO relaying systems and so on, the quadratic nature is always kept and the LMMSE transceiver designs can always be carried out via iteratively solving a number of QMP problems. A comprehensive framework on how to solve QMP problems is also given. The work presented in this paper is likely to be the first shoot for the transceiver design for the future ever-changing wireless systems.Comment: 31 pages, 4 figures, Accepted by IET Communication

    Asymptotic SER and Outage Probability of MIMO MRC in Correlated Fading

    Full text link
    This letter derives the asymptotic symbol error rate (SER) and outage probability of multiple-input multiple-output (MIMO) maximum ratio combining (MRC) systems. We consider Rayleigh fading channels with both transmit and receive spatial correlation. Our results are based on new asymptotic expressions which we derive for the p.d.f. and c.d.f. of the maximum eigenvalue of positive-definite quadratic forms in complex Gaussian matrices. We prove that spatial correlation does not affect the diversity order, but that it reduces the array gain and hence increases the SER in the high SNR regime.Comment: 10 pages, 2 figures, to appear in IEEE Signal Processing Letter

    Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems

    Full text link
    We propose a subspace constrained precoding scheme that exploits the spatial channel correlation structure in massive MIMO cellular systems to fully unleash the tremendous gain provided by massive antenna array with reduced channel state information (CSI) signaling overhead. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace control matrix. The inner precoder is adaptive to the local CSI at each BS for spatial multiplexing gain. The Tx subspace control is adaptive to the channel statistics for inter-cell interference mitigation and Quality of Service (QoS) optimization. Specifically, the Tx subspace control is formulated as a QoS optimization problem which involves an SINR chance constraint where the probability of each user's SINR not satisfying a service requirement must not exceed a given outage probability. Such chance constraint cannot be handled by the existing methods due to the two stage precoding structure. To tackle this, we propose a bi-convex approximation approach, which consists of three key ingredients: random matrix theory, chance constrained optimization and semidefinite relaxation. Then we propose an efficient algorithm to find the optimal solution of the resulting bi-convex approximation problem. Simulations show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication

    Performance Analysis of Dual-User Macrodiversity MIMO Systems with Linear Receivers in Flat Rayleigh Fading

    Full text link
    The performance of linear receivers in the presence of co-channel interference in Rayleigh channels is a fundamental problem in wireless communications. Performance evaluation for these systems is well-known for receive arrays where the antennas are close enough to experience equal average SNRs from a source. In contrast, almost no analytical results are available for macrodiversity systems where both the sources and receive antennas are widely separated. Here, receive antennas experience unequal average SNRs from a source and a single receive antenna receives a different average SNR from each source. Although this is an extremely difficult problem, progress is possible for the two-user scenario. In this paper, we derive closed form results for the probability density function (pdf) and cumulative distribution function (cdf) of the output signal to interference plus noise ratio (SINR) and signal to noise ratio (SNR) of minimum mean squared error (MMSE) and zero forcing (ZF) receivers in independent Rayleigh channels with arbitrary numbers of receive antennas. The results are verified by Monte Carlo simulations and high SNR approximations are also derived. The results enable further system analysis such as the evaluation of outage probability, bit error rate (BER) and capacity.Comment: 24 pages, 7 figures; IEEE Transaction of Wireless Communication 2012 Corrected typo
    • …
    corecore