139 research outputs found

    Multi Criteria Mapping Based on SVM and Clustering Methods

    Get PDF
    There are many more ways to automate the application process like using some commercial software’s that are used in big organizations to scan bills and forms, but this application is only for the static frames or formats. In our application, we are trying to automate the non-static frames as the study certificate we get are from different counties with different universities. Each and every university have there one format of certificates, so we try developing a very new application that can commonly work for all the frames or formats. As we observe many applicants are from same university which have a common format of the certificate, if we implement this type of tools, then we can analyze this sort of certificates in a simple way within very less time. To make this process more accurate we try implementing SVM and Clustering methods. With these methods we can accurately map courses in certificates to ASE study path if not to exclude list. A grade calculation is done for courses which are mapped to an ASE list by separating the data for both labs and courses in it. At the end, we try to award some points, which includes points from ASE related courses, work experience, specialization certificates and German language skills. Finally, these points are provided to the chair to select the applicant for master course ASE

    Penalized estimation in high-dimensional data analysis

    Get PDF

    Signal and image processing methods for imaging mass spectrometry data

    Get PDF
    Imaging mass spectrometry (IMS) has evolved as an analytical tool for many biomedical applications. This thesis focuses on algorithms for the analysis of IMS data produced by matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. IMS provides mass spectra acquired at a grid of spatial points that can be represented as hyperspectral data or a so-called datacube. Analysis of this large and complex data requires efficient computational methods for matrix factorization and for spatial segmentation. In this thesis, state of the art processing methods are reviewed, compared and improved versions are proposed. Mathematical models for peak shapes are reviewed and evaluated. A simulation model for MALDI-TOF is studied, expanded and developed into a simulator for 2D or 3D MALDI-TOF-IMS data. The simulation approach paves way to statistical evaluation of algorithms for analysis of IMS data by providing a gold standard dataset. [...

    Image registration: Features and applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    End-Shape Analysis for Automatic Segmentation of Arabic Handwritten Texts

    Get PDF
    Word segmentation is an important task for many methods that are related to document understanding especially word spotting and word recognition. Several approaches of word segmentation have been proposed for Latin-based languages while a few of them have been introduced for Arabic texts. The fact that Arabic writing is cursive by nature and unconstrained with no clear boundaries between the words makes the processing of Arabic handwritten text a more challenging problem. In this thesis, the design and implementation of an End-Shape Letter (ESL) based segmentation system for Arabic handwritten text is presented. This incorporates four novel aspects: (i) removal of secondary components, (ii) baseline estimation, (iii) ESL recognition, and (iv) the creation of a new off-line CENPARMI ESL database. Arabic texts include small connected components, also called secondary components. Removing these components can improve the performance of several systems such as baseline estimation. Thus, a robust method to remove secondary components that takes into consideration the challenges in the Arabic handwriting is introduced. The methods reconstruct the image based on some criteria. The results of this method were subsequently compared with those of two other methods that used the same database. The results show that the proposed method is effective. Baseline estimation is a challenging task for Arabic texts since it includes ligature, overlapping, and secondary components. Therefore, we propose a learning-based approach that addresses these challenges. Our method analyzes the image and extracts baseline dependent features. Then, the baseline is estimated using a classifier. Algorithms dealing with text segmentation usually analyze the gaps between connected components. These algorithms are based on metric calculation, finding threshold, and/or gap classification. We use two well-known metrics: bounding box and convex hull to test metric-based method on Arabic handwritten texts, and to include this technique in our approach. To determine the threshold, an unsupervised learning approach, known as the Gaussian Mixture Model, is used. Our ESL-based segmentation approach extracts the final letter of a word using rule-based technique and recognizes these letters using the implemented ESL classifier. To demonstrate the benefit of text segmentation, a holistic word spotting system is implemented. For this system, a word recognition system is implemented. A series of experiments with different sets of features are conducted. The system shows promising results

    Feature Fusion for Fingerprint Liveness Detection

    Get PDF
    For decades, fingerprints have been the most widely used biometric trait in identity recognition systems, thanks to their natural uniqueness, even in rare cases such as identical twins. Recently, we witnessed a growth in the use of fingerprint-based recognition systems in a large variety of devices and applications. This, as a consequence, increased the benefits for offenders capable of attacking these systems. One of the main issues with the current fingerprint authentication systems is that, even though they are quite accurate in terms of identity verification, they can be easily spoofed by presenting to the input sensor an artificial replica of the fingertip skin’s ridge-valley patterns. Due to the criticality of this threat, it is crucial to develop countermeasure methods capable of facing and preventing these kind of attacks. The most effective counter–spoofing methods are those trying to distinguish between a "live" and a "fake" fingerprint before it is actually submitted to the recognition system. According to the technology used, these methods are mainly divided into hardware and software-based systems. Hardware-based methods rely on extra sensors to gain more pieces of information regarding the vitality of the fingerprint owner. On the contrary, software-based methods merely rely on analyzing the fingerprint images acquired by the scanner. Software-based methods can then be further divided into dynamic, aimed at analyzing sequences of images to capture those vital signs typical of a real fingerprint, and static, which process a single fingerprint impression. Among these different approaches, static software-based methods come with three main benefits. First, they are cheaper, since they do not require the deployment of any additional sensor to perform liveness detection. Second, they are faster since the information they require is extracted from the same input image acquired for the identification task. Third, they are potentially capable of tackling novel forms of attack through an update of the software. The interest in this type of counter–spoofing methods is at the basis of this dissertation, which addresses the fingerprint liveness detection under a peculiar perspective, which stems from the following consideration. Generally speaking, this problem has been tackled in the literature with many different approaches. Most of them are based on first identifying the most suitable image features for the problem in analysis and, then, into developing some classification system based on them. In particular, most of the published methods rely on a single type of feature to perform this task. Each of this individual features can be more or less discriminative and often highlights some peculiar characteristics of the data in analysis, often complementary with that of other feature. Thus, one possible idea to improve the classification accuracy is to find effective ways to combine them, in order to mutually exploit their individual strengths and soften, at the same time, their weakness. However, such a "multi-view" approach has been relatively overlooked in the literature. Based on the latter observation, the first part of this work attempts to investigate proper feature fusion methods capable of improving the generalization and robustness of fingerprint liveness detection systems and enhance their classification strength. Then, in the second part, it approaches the feature fusion method in a different way, that is by first dividing the fingerprint image into smaller parts, then extracting an evidence about the liveness of each of these patches and, finally, combining all these pieces of information in order to take the final classification decision. The different approaches have been thoroughly analyzed and assessed by comparing their results (on a large number of datasets and using the same experimental protocol) with that of other works in the literature. The experimental results discussed in this dissertation show that the proposed approaches are capable of obtaining state–of–the–art results, thus demonstrating their effectiveness
    corecore