626 research outputs found

    Robust Adaptive Beamforming for General-Rank Signal Model with Positive Semi-Definite Constraint via POTDC

    Full text link
    The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here we solve the non-convex DC problem rigorously and give arguments suggesting that the solution is globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function whose corresponding optimization problem is non-convex. Then, the optimal value function is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional optimal value function is minimized iteratively via polynomial time DC (POTDC) algorithm.We show that our solution satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions and there is a strong evidence that such solution is also globally optimal. Towards this conclusion, we conjecture that the new optimal value function is a convex function. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.Comment: 29 pages, 7 figures, 2 tables, Submitted to IEEE Trans. Signal Processing on August 201

    Quadratically Constrained Beamforming Robust Against Direction-of-Arrival Mismatch

    Get PDF
    It is well known that the performance of the minimum variance distortionless response (MVDR) beamformer is very sensitive to steering vector mismatch. Such mismatches can occur as a result of direction-of-arrival (DOA) errors, local scattering, near-far spatial signature mismatch, waveform distortion, source spreading, imperfectly calibrated arrays and distorted antenna shape. In this paper, an adaptive beamformer that is robust against the DOA mismatch is proposed. This method imposes two quadratic constraints such that the magnitude responses of two steering vectors exceed unity. Then, a diagonal loading method is used to force the magnitude responses at the arrival angles between these two steering vectors to exceed unity. Therefore, this method can always force the gains at a desired range of angles to exceed a constant level while suppressing the interferences and noise. A closed-form solution to the proposed minimization problem is introduced, and the diagonal loading factor can be computed systematically by a proposed algorithm. Numerical examples show that this method has excellent signal-to-interference-plus-noise ratio performance and a complexity comparable to the standard MVDR beamformer

    Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems

    Full text link
    Sum-rate maximization in two-way amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying belongs to the class of difference-of-convex functions (DC) programming problems. DC programming problems occur as well in other signal processing applications and are typically solved using different modifications of the branch-and-bound method. This method, however, does not have any polynomial time complexity guarantees. In this paper, we show that a class of DC programming problems, to which the sum-rate maximization in two-way MIMO relaying belongs, can be solved very efficiently in polynomial time, and develop two algorithms. The objective function of the problem is represented as a product of quadratic ratios and parameterized so that its convex part (versus the concave part) contains only one (or two) optimization variables. One of the algorithms is called POlynomial-Time DC (POTDC) and is based on semi-definite programming (SDP) relaxation, linearization, and an iterative search over a single parameter. The other algorithm is called RAte-maximization via Generalized EigenvectorS (RAGES) and is based on the generalized eigenvectors method and an iterative search over two (or one, in its approximate version) optimization variables. We also derive an upper-bound for the optimal values of the corresponding optimization problem and show by simulations that this upper-bound can be achieved by both algorithms. The proposed methods for maximizing the sum-rate in the two-way AF MIMO relaying system are shown to be superior to other state-of-the-art algorithms.Comment: 35 pages, 10 figures, Submitted to the IEEE Trans. Signal Processing in Nov. 201

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria
    • …
    corecore