74 research outputs found

    A Novel FastICA Method for the Reference-based Contrast Functions

    Get PDF
    This paper deals with the efficient optimization problem of Cumulant-based contrast criteria in the Blind Source Separation (BSS) framework, in which sources are retrieved by maximizing the Kurtosis contrast function. Combined with the recently proposed reference-based contrast schemes, a new fast fixed-point (FastICA) algorithm is proposed for the case of linear and instantaneous mixture. Due to its quadratic dependence on the number of searched parameters, the main advantage of this new method consists in the significant decrement of computational speed, which is particularly striking with large number of samples. The method is essentially similar to the classical algorithm based on the Kurtosis contrast function, but differs in the fact that the reference-based idea is utilized. The validity of this new method was demonstrated by simulations

    New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

    Get PDF
    Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications

    An Efficient Algorithm by Kurtosis Maximization in Reference-Based Framework

    Get PDF
    This paper deals with the optimization of kurtosis for complex-valued signals in the independent component analysis (ICA) framework, where source signals are linearly and instantaneously mixed. Inspired by the recently proposed reference-based contrast schemes, a similar contrast function is put forward, based on which a new fast fixed-point (FastICA) algorithm is proposed. The new optimization method is similar in spirit to the former classical kurtosis-based FastICA algorithm but differs in the fact that it is much more efficient than the latter in terms of computational speed, which is significantly striking with large number of samples. The performance of this new algorithm is confirmed through computer simulations

    A general algebraic algorithm for blind extraction of one source in a MIMO convolutive mixture

    No full text
    International audienceThe paper deals with the problem of blind source extraction from a MIMO convolutive mixture. We define a new criterion for source extraction which uses higher-order contrast functions based on so called reference signals. It generalizes existing reference-based contrasts. In order to optimize the new criterion, we propose a general algebraic algorithm based on best rank-1 tensor approximation. Computer simulations illustrate the good behavior and the interest of our algorithm in comparison with other approaches

    Reference based contrast functions in a semi-blind context

    No full text
    International audienceWe deal with blind signal extraction in the framework of a convolutive mixture of independent sources. Considering so-called reference signals, we generalize former identifiability conditions. Based on this result, we propose to incorporate some a priori information in the references. We show the validity of reference based contrast functions in two semi-blind situations. The results are confirmed by computer simulation

    Generalized identifiability conditions for blind convolutive MIMO separation

    No full text
    International audienceThis paper deals with the problem of source separation in the case where the output of a multivariate convolutive mixture is observed: we propose novel and generalized conditions for the blind identifiability of a separating system. The results are based on higher-order statistics and are valid in the case of stationary but not necessarily i.i.d. signals. In particular, we extend recent results based on second-order statistics only. The approach relies on the use of so called reference signals. Our new results also show that only weak conditions are required on the reference signals: this is illustrated by simulations and opens up the possibility of developing new methods

    Non-orthogonal joint block diagonalization based on the LU or QR factorizations for convolutive blind source separation

    Get PDF
    This article addresses the problem of blind source separation, in which the source signals are most often of the convolutive mixtures, and moreover, the source signals cannot satisfy independent identical distribution generally. One kind of prevailing and representative approaches for overcoming these difficulties is joint block diagonalization (JBD) method. To improve present JBD methods, we present a class of simple Jacobi-type JBD algorithms based on the LU or QR factorizations. Using Jacobi-type matrices we can replace high dimensional minimization problems with a sequence of simple one-dimensional problems. The novel methods are more general i.e. the orthogonal, positive definite or symmetric matrices and a preliminary whitening stage is no more compulsorily required, and further, the convergence is also guaranteed. The performance of the proposed algorithms, compared with the existing state-of-the-art JBD algorithms, is evaluated with computer simulations and vibration experimental. The results of numerical examples demonstrate that the robustness and effectiveness of the two novel algorithms provide a significant improvement i.e., yield less convergence time, higher precision of convergence, better success rate of block diagonalization. And the proposed algorithms are effective in separating the vibration signals of convolutive mixtures

    Multichannel Speech Separation and Enhancement Using the Convolutive Transfer Function

    Get PDF
    This paper addresses the problem of speech separation and enhancement from multichannel convolutive and noisy mixtures, \emph{assuming known mixing filters}. We propose to perform the speech separation and enhancement task in the short-time Fourier transform domain, using the convolutive transfer function (CTF) approximation. Compared to time-domain filters, CTF has much less taps, consequently it has less near-common zeros among channels and less computational complexity. The work proposes three speech-source recovery methods, namely: i) the multichannel inverse filtering method, i.e. the multiple input/output inverse theorem (MINT), is exploited in the CTF domain, and for the multi-source case, ii) a beamforming-like multichannel inverse filtering method applying single source MINT and using power minimization, which is suitable whenever the source CTFs are not all known, and iii) a constrained Lasso method, where the sources are recovered by minimizing the â„“1\ell_1-norm to impose their spectral sparsity, with the constraint that the â„“2\ell_2-norm fitting cost, between the microphone signals and the mixing model involving the unknown source signals, is less than a tolerance. The noise can be reduced by setting a tolerance onto the noise power. Experiments under various acoustic conditions are carried out to evaluate the three proposed methods. The comparison between them as well as with the baseline methods is presented.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    New kurtosis optimization schemes for MISO equalization

    No full text
    International audienceThis paper deals with efficient optimization of cumulant based contrast functions. Such a problem occurs in the blind source separation framework, where contrast functions are criteria to be maximized in order to retrieve the sources. More precisely, we focus on the extraction of one source signal and our method applies in deflation approaches, where the sources are extracted one by one. We propose new methods to maximize the kurtosis contrast function. These methods are intermediate between a gradient and an iterative "fixed-point" optimization of so-called reference contrasts. They rely on iterative updates of the parameters which monotonically increase the contrast function value: we point out the strong similarity with the Expectation-Maximization (EM) method and with recent generalizations referred to as Minimization-Maximization (MM). We also prove the global convergence of the algorithm to a stationary point. Simulations confirm the convergence of our methods to a separating solution. They also show experimentally that our methods have a much lower computational cost than former classical optimization methods. Finally, simulations suggest that the methods remain valid under weaker conditions than those required for proving convergence
    • …
    corecore