539 research outputs found

    High-order numerical solutions using cubic splines

    Get PDF
    The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes

    A Review on Higher Order Spline Techniques for Solving Burgers Equation using B-Spline methods and Variation of B-Spline Techniques

    Full text link
    This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers' equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these method

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient

    Extended modified cubic B-spline algorithm for nonlinear Burgers' equation

    Get PDF
    AbstractIn this paper, an extended modified cubic B-Spline differential quadrature method is proposed to approximate the solution of the nonlinear Burgers' equation. The proposed method is used in space and a five-stage and four order strong stability-preserving time-stepping Runge–Kutta (SSP-RK54) method is used in time. The accuracy and efficiency of the method is illustrated by considering four numerical problems. The numerical results of the method are compared with some existing methods and it was found that the proposed numerical method produces acceptable results and even more accurate results in comparison with some existing methods. The stability analysis of the scheme is also carried out and was found to be unconditionally stable
    • …
    corecore