825 research outputs found

    Optimal Replica Placement in Tree Networks with QoS and Bandwidth Constraints and the Closest Allocation Policy

    Get PDF
    This paper deals with the replica placement problem on fully homogeneous tree networks known as the Replica Placement optimization problem. The client requests are known beforehand, while the number and location of the servers are to be determined. We investigate the latter problem using the Closest access policy when adding QoS and bandwidth constraints. We propose an optimal algorithm in two passes using dynamic programming

    A novel cost-based replica server placement for optimal service quality in cloud-based content delivery network

    Get PDF
    Replica server placement is one of the crucial concerns for a given geographic diversity associated with placement problems in content delivery network (CDN). After reviewing the existing literatures, it is noted that studies are more for solving placement problem in conventional CDN and not much over cloud-based CDN architectures, which some few studies are reported towards replica selection are much in its nascent stages of development. Moreover, such models are not benchmarked or practically assessed to prove its effectiveness. Hence, the proposed study introduces a novel design of computational framework associated with cloud-based CDN which can facilitate cost-effective replica server management for enhanced service delivery. Implemented using analytical research methodology, the simulated study outcome shows that proposed scheme offers reduced cost, reduced resource dependencies, reduced latency, and faster processing time in contrast to existing models of replica server placement

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Flexible and dynamic replication control for interdependent distributed real-time embedded systems

    Get PDF
    Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined

    An autonomic framework for enhancing the quality of data grid services

    Get PDF
    Data grid services have been used to deal with the increasing needs of applications in terms of data volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make management and tuning of these data services very complex. Furthermore, current high-performance I/O approaches are characterized by their high complexity and specific features that usually require specialized administrator skills. Autonomic computing can help manage this complexity. The present paper describes an autonomic subsystem intended to provide self-management features aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) of data access and storage services in the grid. Our proposal takes into account that data produced in an I/O system is not usually immediately required. Therefore, performance improvements are related not only to current but also to any future I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the future workload of grid components. This enables the autonomic subsystem to determine the optimal data placement to improve both current and future I/O operations

    Towards a flexible and dynamic replication control for distributed real-time embedded systems with QoS interdependencies

    Get PDF
    Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach
    • …
    corecore