192 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Development of an SDN control plane for Time-Sensitive Networking (TSN) endpoints

    Get PDF
    Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    Time-Sensitive Networking for Industrial Automation: Challenges, Opportunities, and Directions

    Full text link
    With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) into industrial applications, industrial automation is undergoing tremendous change, especially with regard to improving efficiency and reducing the cost of products. Industrial automation applications are often required to transmit time- and safety-critical data to monitor and control industrial processes, especially for critical control systems. There are a number of solutions to meet these requirements (e.g., priority-based real-time schedules and closed-loop feedback control systems). However, due to their different processing capabilities (e.g., in the end devices and network switches), different vendors may come out with distinct solutions, and this makes the large-scale integration of devices from different vendors difficult or impossible. IEEE 802.1 Time-Sensitive Networking (TSN) is a standardization group formed to enhance and optimize the IEEE 802.1 network standards, especially for Ethernet-based networks. These solutions can be evolved and adapted into a cross-industry scenario, such as a large-scale distributed industrial plant, which requires multiple industrial entities working collaboratively. This paper provides a comprehensive review on the current advances in TSN standards for industrial automation. We present the state-of-the-art IEEE TSN standards and discuss the opportunities and challenges when integrating each protocol into the industry domains. Finally, we discuss some promising research about applying the TSN technology to industrial automation applications

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Reserva de recursos em automotive ethernet

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesIn recent years, automotive industry has undergone major changes, being able to highlight not only the growing development of electronic systems in increasingly and varied features and contexts, as well as to cope with its growing interaction between with the driver and the outside world. Due to the huge amount of traffic involved in these system communications, networking technologies used so far are starting to be less appealing and the industry began to consider alternatives, economically more competitive as is the case of Ethernet. The use of Ethernet technology in automotive domains faces some challenges, namely with time constraints compliance and well defined resource requirements. The emergence of AVB (Audio Video Bridging) protocols, is trying to tackle some of these problems of having dynamic Quality of Service management in automotive Ethernet networks. One example of such protocols is the signalling protocol (SRP Stream Reservation Protocol), which could be used for providing a resource reservation mechanism in an automotive Ethernet domain. To test the feasibility of such recent methods, simulation tools are of paramount importance. This work presents an implementation of the SRP (Stream Reservation Protocol) in Omnet++, taking into account some of its constraints. It is described the fundamental aspects of this model implementation, as well as some functional tests.Nos últimos anos, a industria automóvel tem sofrido grandes evoluções, podendo-se destacar não só o crescente desenvolvimento de sistemas eletrónicos em contextos e funcionalidades cada vez mais variados, como também a crescente interacção deste com o condutor e o mundo exterior. Devido ao enorme aumento de tráfego envolvido nas comunicações que compõem esses sistemas, as tecnologias de redes usadas até então deixaram de ser tão apelativas e passaram-se a considerar alternativas económicamente mais competitivas como é o caso da Ethernet. O uso de redes Ethernet em âmbito automóvel levanta alguns problemas, nomeadamente no cumprimento de limites temporais e requisitos de recursos bem definidos. O aparecimento de protocolos AVB (Audio Video Bridging) vem tentar colmatar vários problemas de gestão dinâmica de Qualidade de Serviço das redes Ethernet no domínio automóvel. O protocol de sinalização SRP (Stream Reservation Protocol) pode ser adaptado para redes Ethernet no contexto automóvel para proporcionar um mecanismo de reserva de recursos. Para testar a viabilidade de métodos tão recentes, as ferramentes de simulação são de uma importância vital. Este trabalho apresententa uma implemetação do protocolo SRP (Stream Reservation Protocol) em ambiente de simulação OMNeT++. São apresentados os aspectos fundamentais do modelo implemetado bem como alguns testes funcionais de validação deste

    OmniSwitch 7700/7800 OmniSwitch 8800 Network Configuration Guide

    Get PDF
    This configuration guide includes information about configuring the following features: • VLANs, VLAN router ports, mobile ports, and VLAN rules. • Basic Layer 2 functions, such as Ethernet port parameters, source learning, Spanning Tree, and Alcatel interswitch protocols (AMAP and GMAP). • Advanced Layer 2 functions, such as 802.1Q tagging, Link Aggregation, IP Multicast Switching, andServer Load Balancing. • Basic routing protocols and functions, such as static IP routes, RIP, DHCP Relay, Virtual Router Redundancy Protocol (VRRP), and IPX. • Security features, such as switch access control, Authenticated VLANs (AVLANs), authentication servers, and policy management. • Quality of Service (QoS) and Access Control Lists (ACLs) features, such as policy rules for prioritizingand filtering traffic, remapping packet headers, and network address translation. • Diagnostic tools, such as RMON, port mirroring, and switch logging.This OmniSwitch 7700/7800/8800 Network Configuration Guide describes how to set up and monitor software features that will allow your switch to operate in a live network environment. The software features described in this manual are shipped standard with your OmniSwitch 7700, 7800, or 8800. These features are used when setting up your OmniSwitch in a network of switches and routers
    corecore